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ABSTRACT

The frequency domain finite element method (FEM) results in matrix equations
that have polynomial dependence (or transcendental dependence which can be written
as a polynomial via a Taylor series) on the frequency of excitation. For a wide-band
fast frequency sweep technique based on a moment-matching model order reduc-
tion (MORe) process, researchers generally take one of two approaches. The first
is to linearize the polynomial dependence (which will either limit the bandwidth of
accuracy or require the introduction of extra degrees of freedom) and then use a well-
conditioned Krylov subspace technique such as the projection via Arnoldi (PVA) or
the Padé via Lanczos (PVL) processes. The second approach is to work directly with
the polynomial matrix equation and use one of the available, but ill-conditioned,
asymptotic waveform evaluation (AWE) methods. For large-scale FEM simulations,
introducing extra degrees of freedom, and therefore increasing the length of the MORe
vectors and the amount of memory required, is not desirable; therefore, the first
approach is not alluring. On the other hand, an ill-conditioned AWE process is
unattractive. This dissertation presents two MORe techniques for polynomial matrix
equations. The first, an automated multipoint Galerkin AWE (MGAWE) process, is
capable of producing a reduced order model (ROM) with a relatively small subspace.
The second novel process presented, well-conditioned AWE (WCAWE), is capable of
producing an accurate, robust, wide-band simulation with just one expansion point.
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These novel processes are able to circumvent the problematic issues that arise from
the traditional PVA, PVL or AWE techniques. First, these novel processes do not
require any additional unknowns and can operate directly on the polynomial matrix
equation. Second, these processes are wide-band, and in the case of WCAWE, very
well-conditioned even for a large approximation order. Along with the presentation of
these algorithms, numerical examples modeled using the FEM are given throughout
the work to illustrate their accuracy, efficiency and robustness. Finally, this disser-
tation closes with a detailed description of many possible areas of further research
including an extension of the methods to a block and/or multivariable versions, and
applications of the methods to problems in which the system matrix has exponential

variations in the ROM varying parameter.
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CHAPTER 1

INTRODUCTION

Model order reduction (MORe) is a process in which the number of unknowns
(order) of a mathematical representation (model) of a problem of interest is decreased.
The mathematical representation of the system with the smaller number of unknowns
is known as the reduced order model (ROM). Although this work is concerned with
applications in computational electromagnetics, a review of MORe through the late
1980’s can be found in [1] and the references contained therein.

There are many reasons that may motivate the application of a MORe procedure.
All are ultimately related to obtaining a faster simulation time. However, the way
this speedup is obtained can be different from one type of application of a MORe
procedure to another. A few of the most important reasons for applying MORe are
outlined below.

One reason to use MORe is for macromodeling. In macromodeling a part of the
system that does not change is separated from the rest of the system and then sim-
plified to a ROM. Then the ROM is rejoined to the rest of the system and solved.
Macromodeling can be used as part of an optimization problem, or when the original
system contains both a large linear (on which the MORe is applied) and small non-
linear part. An example of macromodeling is when an electronic circuit is separated
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into the linear subsystem and a nonlinear subsystem. MORe is applied to the linear
part, and then the resulting ROM is reconnected to the nonlinear part and the system
is then solved using a circuit simulator such as SPICE. Since the linear part contains
fewer unknowns, the entire simulation (including the MORe procedure to create the
ROM) can be faster than if SPICE were applied to the original, large system. A
recent paper addressing macromodeling is [2].

A second area to which MORe is applicable is domain decomposition problems.
This area is much the same as macromodeling except instead of separating a part of
the system that does not change from the rest of the system, the system is divided
into several subdomains. Then MORe is applied to each of the subdomains and all
the resulting ROMs are rejoined and solved. Domain decomposition MORe can be
especially useful if either the ratio of the number of unknowns on the boundaries that
join the regions to the total number of unknowns is very small or if there are several
subdomains that are repeated throughout the system. An example of this case in
electromagnetism is a problem whose original domain is inside a waveguide. Some
recent work in the area of domain decomposition is given in [3].

A third reason to use MORe is for fast sweep capability. In a fast sweep problem,
some parameter on which the original problem depends is variable and it is desired
to solve this problem as the parameter changes from some initial value through many
intermediate values to some final value. One reason why the solution may be required
at many intermediate values is to reduce the risk of failing to capture a region that is
rapidly varying, for example, near a resonance. When MORe is applied it is essential
that the dominant characteristics of the original system with respect to the varying

parameter are captured in the ROM so the solution to the ROM is accurate. In



addition, since the ROM has fewer unknowns than the original system, it is more
computationally efficient to solve the ROM for many different values of the varying
parameter than to solve the original system. Some examples of fast sweep problems
in electromagnetism are fast frequency sweep problems (when the varying parameter
is the frequency of excitation) and fast angle sweep problems, where it is desired to
investigate how the solution to the original problem changes with the incident angle
of the electromagnetic wave.

Now that the reasons for applying MORe have been established and the type
of general approach is determined, it is necessary to choose some method to create
the original mathematical model of the problem of interest. Some of the popular
modeling methods that have been used in conjunction with MORe are the method of
moments (MoM), a finite difference method, and the finite element method (FEM).
Once a modeling method has been chosen and applied to create the original, large
order mathematical model, a MORe technique must be chosen and applied. A list of
some MORe techniques follows.

Model based parameter estimation (MBPE) [4] is one of the first discussions of
MORe in computational electromagnetics. In that work, MBPE is used to create a
fast frequency sweep ROM of a wire antenna modeled using MoM from a modified
Numerical Electromagnetics Code. The ROM in [4] is created by matching a ratio-
nal polynomial to available data from the MoM code. In [5], MBPE is extended to
create a simultaneous fast angle and frequency sweep ROM for a wire antenna mod-
eled using MoM. However, their MBPE implementation has a drawback in that “the
frequency and spatial domain sampling points and the Padé and polynomial function

interpolation orders were chosen experimentally by varying the parameter values and



selecting those which produced the best results” [5]. Therefore, the procedure is not
automated and essentially requires running several simulations and then choosing the
best solution as the final answer.

A second MORe technique is the spectral Lanczos decomposition method (SLDM).
The SLDM is first presented in [6] where it is used to solve three dimensional problems
in the time and frequency domains. In [6] Yee’s grid is used to discretize the problem
and create the original mathematical model. However, only diffusion behavior of the
equations is assumed. In [7] the FEM is used to model the problem domain and no
assumption is made about the displacement currents being negligible. However, the
applicability of the method in [7] is limited to closed domain regions instead of being
able to handle both open and closed domain problems.

A third type of MORe procedure is the Padé approximation via the Lanczos
process (PVL). Although the Lanczos algorithm first appears in [8] in 1950, it was not
used for MORe until 1994 [9]. The next year, PVL appears in [10] and almost instantly
becomes popular. Initially PVL was applied in the circuit analysis community, but
later was adopted by researchers in computational electromagnetics. An example of
applying PVL to open domain geometries modeled using a finite difference method is
given in [11], and a FEM model of an open domain problem is solved using PVL in
[12]. In addition, in [13] an adaptive Lanczos-Padé sweep (ALPS) [14] variant of PVL
is used to simulate electromagnetics problems modeled using the boundary element
method. However, all of these methods suffer from an inherent limitation of PVL
which requires the original mathematical model to be a linear function of the ROM

varying parameter.



Another type of MORe procedure is based on the Arnoldi process [15]. Like
PVL, Arnoldi requires the matrix system to be a linear function of the ROM varying
parameter, and the right hand side to be constant. Therefore, to apply Arnoldi to
a polynomial matrix equation, the original system must be linearized by introducing
extra degrees of freedom. However, in [16] a method is shown which will allow the
inverse operator that must be applied to be of the same dimension as the original
system, even though the final system must be expanded and linearized. Nevertheless,
the Arnoldi vectors must be of the dimension of the expanded, linearized system.
Since the memory required to store the ROM vectors can be greater than the memory
required to store the sparse matrices, the Arnoldi method may not be practical for
large scale computations where memory is an issue.

Another popular MORe technique is asymptotic waveform evaluation (AWE). Un-
like PVL and Arnoldi, AWE does not require the original model to be a linear func-
tion of the ROM varying parameter. AWE is introduced in [17] to perform MORe
on circuit analysis problems. After the introduction of AWE, it was found that it is
possible to extend AWE to a more accurate MORe technique if complex frequency
hopping (CFH) is employed. In [18] one type of CFH is used in which approximate
solutions computed from different expansion points are considered independently. In
[19] another type of CFH is shown in which some system poles, computed from dif-
ferent expansion points, are considered simultaneously. However, the system poles
themselves are computed using information from only one expansion point. Unfor-
tunately, the CFH algorithms are somewhat difficult to automate and often require

user supervision to ensure accuracy. Furthermore, MBPE [4] can be considered to



be a multipoint AWE in that the coefficients of the rational polynomial can be cal-
culated by considering multiple expansion points simultaneously. At any rate, after
its introduction in circuit analysis, AWE was then applied in computational elec-
tromagnetics, just like PVL. For example, AWE is applied for fast frequency sweep
of open domain geometries modeled using an electric field integral equation in [20]
and on a combined-field integral equation in [21]. The MoM modeling procedure is
also used in conjunction with AWE in [22] where a fast angle sweep is performed for
radar cross section calculations. However, since AWE matches moments in a Taylor
series, and since integral equation formulations result in transcendental functions of
the ROM varying parameter, it is unclear how many terms must be kept in the Taylor
series expansion of the transcendental functions to ensure an accurate solution. On
the other hand, recall that it is not required to use MoM to model problems that
are to be reduced with AWE. In [23] both open and closed domain problems for fast
frequency sweep are modeled using a finite difference method and solved using AWE.
Of course, it is also possible to use the FEM to model the problem domain. In [24]
closed domains are modeled and solved using the FEM and AWE. Finally, open do-
main problems modeled with FEM are solved for a fast frequency sweep using AWE
in [25] and [26].

After discussing all of these MORe techniques and some of the areas in which
they have been applied, one may ask why a new MORe technique is needed. An
answer to that question can be found by asking, “What is wrong with the MORe
techniques that already exist?” Consider the two most popular MORe techniques,
PVL and AWE. Although PVL has a large bandwidth of accuracy with respect to

the ROM varying parameter, the technique is very limited in applicability. This



limitation arises not only from PVL requiring the original mathematical model to be
a linear function of the ROM varying parameter as discussed earlier, but also from
the fact shown in [27] that the number of moments matched (mm) in PVL after ¢
iterations' is related to the number of independent excitations (i.e. inputs, denoted
as p) and number of unknowns at which the solution is desired in the model (i.e.
outputs, denoted as o) by the expression mm = |g/o] + |¢/p|. On the other hand,
AWE suffers no degradation in moment matching power with increasing o and/or p.
In addition, as pointed out earlier, AWE does not require the original model to be a
linear function of the ROM varying parameter. However, AWE suffers from a small
bandwidth of accuracy with respect to the ROM varying parameter. These problems
are addressed in [28] where the authors suggest that the problem with AWE is that
the process is not Galerkin. Therefore, in [28] “AWE is subjected to a Galerkin
treatment (weighted residual)” and is named Galerkin AWE (GAWE). An extension
of GAWE to a multipoint treatment (MGAWE) is given in [29].

After identifying a reason for applying MORe, choosing a method to create the
original mathematical model of the problem of interest and selecting a MORe tech-
nique, it is necessary to consider some issues involved with the application of the
MORe technique. For example, for open region problems modeled using finite meth-
ods it is necessary to terminate the problem domain with a boundary truncation
scheme such as an absorbing boundary condition (ABC), a perfectly matched layer
(PML), or a PML backed by an ABC (ABC-PML). In [30] a finite difference grid is
terminated with a PML and the model is reduced using PVL. However, the method
by which the PML is treated requires introducing an auxiliary variable and thereby

! Assuming no deflation.



increases the number of unknowns that must be solved for. In [12] a model, resulting
when a FEM mesh is terminated with an ABC, is reduced, again using PVL. However,
[12] also has a drawback in that to make the FEM model conform to the frequency
requirement of PVL the number of unknowns in the model must be doubled. In [25]
the AWE technique is used for the MORe of a problem modeled using the FEM with
mesh truncation performed by each one of the methods: ABC, PML, and ABC-PML.
However, the PML implemented in [25] is non-causal. Dispersive PML is considered
in [31], where the FEM is used to model the domain and AWE is used for MORe.
The frequency variation used in [31] requires a fifth degree polynomial. In [29] it is
shown how to implement dispersive PML in conjunction with the FEM and GAWE
requiring only a polynomial frequency variation up to and including fourth order.

Although much work has been done in the area of MORe, there are many issues
that are yet to be addressed. Some of these issues are discussed in the remainder of
this document and possible approaches to them are disclosed. The remainder of this
document is organized as follows.

In chapter 2 a statement of the MORe problem with respect to a fast frequency
sweep is given. In addition, several numerical examples, which are used through-
out the remainder of this work, are introduced. Then, in chapter 3, several classical
MORe techniques are reviewed and compared. The benefits and disadvantages of each
of the methods are illustrated. Next, chapter 4 introduces the multipoint Galerkin
AWE (MGAWE) method. In chapter 4, several practical implementation issues are
addressed to automate the process so no user supervision is required. Then chapter
5 shows a new well-conditioned method for computing a basis for the AWE moment-

matching subspace. Finally, in chapter 6, a summary of this research is presented



along with the conclusions drawn and the author’s suggested areas of future investi-

gation.



CHAPTER 2

PROBLEM STATEMENT AND ILLUSTRATIVE
EXAMPLES

2.1 Mathematical statement of MORe problem

Assume that a modeling procedure, such as the finite element method (FEM),
has been applied to a problem of interest, and a matrix system of equations has been

obtained. In particular, consider the matrix equation
A(s)X(s) =B(s) (2.1)

where A(s) € CV*V is the system matrix, B(s) € CV*? (where p is the number
of independent inputs that can inject excitations into the FEM mesh) is the right
hand side matrix, X(s) € C¥*? is the solution matrix, s = jw and w = 27 f for the
frequency of excitation f. Since the mapping from f to s is injective, the notation
X(f) will replace X(s) when it is convenient to do so. To illustrate the ideas, assume
that it is desired to use MORe for a fast frequency sweep (FFS) in which (2.1)
will be solved for f,, values of f ranging from fi = finin to ff... = fmaz- The

straightforward way to solve this problem is to compute

X(fu) = A(fu)_lB(fu) for w=1,2,... foum, (2'2)
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where A (f,) ! is performed efficiently by computing, for example, LU decompositions
or preconditioners for the conjugate gradient method. Note that a total of f,..,
different decompositions or preconditioners are necessary. However, a FFS MORe
procedure only requires computing a few decompositions or preconditioners; in fact,
the number required is equal to the number of expansion points (num_pts) used.
MORe techniques are computationally efficiency because num_pts < fpum; using
only this information, they attempt to accurately extrapolate and interpolate the
solution at all f,. Details common to most MORe techniques are further outlined

below.

Definition 2.1 Define the set v = {1,2,...,num_pts}, and let

Oy, = J2mfy — 50, for vewv, u=1,2,... frum (2.3)
and

oy, =j2rf —sy, for vev (2.4)
where sg, is the location of the vth expansion point. O

Using a finite order matrix Taylor series, (2.1) can be rewritten as
al ) bl
> (@A) X(f) =D o*By. (2.5)
=0 k=0
Note that in (2.5) A; and By have already been shifted to the coordinate system at
So,- If a; and by are chosen large enough so no significant higher order A; and/or By

term is truncated, any o, and corresponding set of A; and By, can be used in (2.5) as

long as consistency is maintained. Otherwise, given some value f, of f, let o depend
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on the sg, that is “closest” to j27 f,. More precisely, given some value f, of f, let
v g

O =20

(2.6)

min{fEu 3 |og, |[=minyey (|ow, |)}

This o and the corresponding A; and By should be used in (2.5) to give a more
accurate evaluation at the particular f, in question.

Finally, assume there are o < N unknowns of interest that are desired as outputs.
Let L € CV*° be the matrix that selects these o outputs, and let H(f) € C°*P be the

solution matrix, where

H(f) = L"X(f). (2.7)

2.2 Numerical examples used in this study

2.2.1 TM, antenna radiation with an ABC

Consider the T'M, case for the generalized 2-D Helmholtz equation applied to an

antenna radiation problem,

dl1o0 010 9 .
- - —_ = 2.
<8xu8x+8y,u8y+w 6) E, =jwl,, (2.8)

where y and e are isotropic and non-dispersive. The angular frequency is given by
w, and the problem is driven by an electric current source .J,. The problem domain
of interest is shown in Figure 2.1, where Q2 is the FEM region and 0f2 is the outer

boundary of the FEM region. Application of the method of weighted residuals gives

weE, ¢, dS

1 F
= —jw // J ¢y dS + —qﬁt& de, (2.9)
0 o b On

where ¢; (t =1,2,...,N) are the weighting functions.

// 10F, 8¢t 10E, 0¢;
i Ox Oz ,uay oy

12



0Q

Figure 2.1: FEM problem domain with an ABC.

In order to solve (2.9) the normal derivative of E, (OF,/0n) must be specified
on 0{2. Assuming that 02 is in the shape of a circle, one can apply the Bayliss
Gunzburger Turkel (BGT) absorbing boundary condition (ABC) [32] to the outer

boundary. The first-order BGT ABC is given by

0 1
— 4+ — | E, = 2.1
(5 +38+5;) B =0, (2.10)

where p is the distance of the boundary from the center of the mesh, p is the direction

normal to 02 and 3 is the wave number. Substitution of (2.10) into (2.9) leads to
10E,0¢; 10E, 0¢, / 1
as E, d¢
//u&vax 1 Oy Oy +aQ ” 2

:—jw// J.pp dS. (2.11)

Note that (2.11) is composed of terms which depend on polynomial orders of

w, so the terms in (2.11) with common polynomial orders can be grouped together.
Also, E, can be expanded in terms of the FEM basis functions with the number of

13



basis functions being equal to the number of weighting functions, resulting in N x N

matrices. The final equation is of the form
(A() + 8A1 + 82A2) X(S) = Sbl, (212)

where a nonzero sy, has not yet been chosen, p = 1 because there is a single excitation
vector, and b; and each A; matrix is independent of s.
Example 1: A model of a two-dimensional horn antenna (whose diagram is shown

in Figure 2.2) is created using the above approach. The dimension of the resulting A;

mae(?__,_,,

0%
1.05 meters R
e ——————————— » 20 degrees
e e | 0.2141 meters

1

Source  Unknowns

Figure 2.2: Geometry of the horn antenna.

matrices is N = 3438. It is desired to find the wave impedance inside the horn from
500MHz to 1.5GHz, which can be done by using L to select the 3 outputs indicated

as unknowns in Figure 2.2.

14



2.2.2 TM, radiation with anisotropic, dispersive PML

Again consider the T'M, case for the generalized 2-D Helmholtz equation applied
to an antenna radiation problem where this time the permeability (1) and permittivity

(€) are anisotropic and dispersive,

01090 010 9 .
oto 919 ) E, = jwd,. 2.1
(8a:uy8x+6yumay+we) Jjwd (2.13)

The problem domain of interest is shown in Figure 2.3, where Q2 is the FEM region,

e e e = ]

Figure 2.3: FEM problem domain for PEC backed PML.

which is the union of the regions €2, for m = 1...4, and 012 is the perfect electric
conductor (PEC) outer boundary of the FEM region. The region between 02 and the
parallel dashed region contains anisotropic, dispersive perfectly matched layer (PML)
material. In particular, let

_ay—j%‘ _aw—j’% _ e . By
Hx = B Ho, ,uy - B Ho, €= \|\0z — ] ay -] €o€r
Gz =], L w



where

PP if in PML with dissipation desired in = and/or y,
7Y 1 1 if in isotropic material

and likewise

B, 3, = B if in PML with dissipation desired in z and/or y,
©FY 71 0 if in isotropic material.

Apply the method of weighted residuals (and multiply through by (o — ]g) w?)

to obtain

// (o - 52) (a—jg)gaEz%Jr (0r —32) (o — j&) w? 3B, 09,
Q (aw—ji—””) to 0r Ox (ay_ji,_y) o Oy Oy

- <am - j%) (ay - j%) (a - jg) e Bonds == [ [ (a - jg) jo* Ty dS

) B\ w?oE, 1. B\ w?OE, .
LAY 2 ) S

where 7 is the unit normal to 02 and ¢; (¢t = 1,2,...,N) are again the weighting

functions. Enforce the boundary conditions on tangential H at the interface between

elements as shown in Figure 2.4 to give

1 OF 1 OF,

L o, = —juH, = 0,

Yz, OY Uz, OY
and

1 OF, 1 OF,

— 2t = —ijyl = —ju)l[]y2 = ——22

:U'yl 637 :U'y2 833

Therefore, all contributions from inter-element boundaries cancel each other. In
addition, since ¢; = 0 on PEC (i.e. do not test there), the term in (2.14) that

contains | sq @l is equal to zero for all inter-element and outer boundaries. Equation
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Region 1 | Region 2

. and ﬂ/} Region 1
T T T Hy2 Region 2

>

x L.,

Hx2
l—ﬂ/

Figure 2.4: Interface between elements.

(2.14) now becomes

/ / Cy (w) LOB29% | o () LOE000 () eoer By dS =
Q

P 1o Oy By
_ / / Ci (@) jluh dS (2.15)
Q

where C; (w) for j = 1...4 is given in Table 2.1 for each region Q,, for m =1...4.
Now (2.15) is composed of terms which depend on polynomial orders of w, and
the common order terms are again grouped together. Expanding F, in terms of FEM

basis functions gives a final equation of the form

Z (s'A;) x(s) = Z s*by.. (2.16)

1=0

[5 Qo Q3 Q4
Qg o o 1 1
ay a 1 a 1
Be B B 0 0
By f 0 8 0
C1 ow? — jBw w? o’w? — j20Bw — B? ow? — jBw
Cs oaw? — jBw o2w? — j20hw — B2 w? ow? — jBw
C3 | aw? —j3a2pw?® —3a82w? +jB%w  olwt — j20hBwd — f2w? 2wt — j2afwd — B2w?  aw? — jBwd
Cy aw® — jBw? aw® — jBw? aw? — jpw? aw? — jBw?

Table 2.1: Values for oy, oy, B, 8, and C; (w) for j = 1...4 for each region €, for
m=1...4.

17



where, again, p = 1 and the matrices A; for i = 0...4 and vectors by for k =0...3
are all independent of s. To shift (2.16) to some nonzero s, substitute s = o + s,

into (2.16) and collect common terms of o. The result is

Z (0'A)x(f) =) o*by (2.17)
where

Ay = Ag+s0,Ar+5s5Ar+s5 Ay + sy Ay (2.18)
A, = A, +250,Ar+3s5 Ay +4s) Ay

Ay = A, +3s,A3+6s5 Ay

A; = A;+ 4SOUA4

A, = Ay

by = bg+ 80051 + SSUBQ + sgvt_)g

by = b+ 250, by + 3s%v53

by, = by+ 350, bs

b3 == b3.

Example 2: A model of a material cylinder illuminated by a uniform electric line
source is created using the above method. The order of the resulting A; matrices is
N = 4734. The solution is computed up to 500MHz, which is the frequency where

the edge length of a side of an element is about 1/20 of a wavelength.
2.2.3 TE, scattering from a material cylinder

For this type of example, the A; matrices can be found as shown in the previous

subsections, but special care must be given to the right hand side because it contains
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exponential terms of s. The right hand side, however, can be expanded into a Taylor

series around sg,. The form of an entry in the right hand side looks like
(sCy + Cy) e (2.19)
where

Ci = /pe(l—cos(9)), (2.20)

~ 1
Cy = %, (2.21)

C3 = —y/uepcos(d), (2.22)
¢ is the angle difference between the location of the finite element under consideration
and the incoming uniform plane wave, and p is the distance of the boundary from the

center of the mesh. The Taylor series for (2.19) is

o0

k
o _ ) _ o )
> [kClC?’f_lesOvCS + (50,C1 + C) c;feSOst} . (2.23)
k=0

Example 3: A TFE, uniform plane wave is scattered from a material cylinder and
modeled using the approach outlined above. The outer boundary of the FEM mesh is
treated with an absorbing boundary condition and it is found that the Taylor series
expansion introduces insignificant error into the solution if 5 = 10 (that is, eleven
terms are used with powers ranging from ¢° to 0'%). Therefore, the matrix system
can be written as

Z (c"A;) x(f) = Zakbk (2.24)

1=0

where, as always, it is the case that A; and by must be written so they are not
functions of s. The solution to this problem is then computed up to 500MHz, which
is again the frequency where an element’s average edge length is about A\/20. For this
example, N = 1276.
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2.2.4 Three-dimensional tangentially continuous vector FEM
The differential form of Maxwell’s Equations in the frequency domain are

VxE=—jwy-H (2.25)

VxH=J+jw[e-E (2.26)

where [2] and [ZL] are tensors. Substituting (2.26) into the curl of (2.25) gives the the

vector Helmholtz equation

-1 =
V X ([u] -V x E) —w’[e] - E+ jwl =0. (2.27)
Then, for any vector function F,

/// {V X ([;]_1 -V x E) — uﬂ[z] -E-|-jw,]} .FdV =0. (2.28)

Assuming that V x F exists, then by Green’s first identity one obtains
///(V><F)-[;]_1-(V><E)—w2F-[z]-EdV
Q

+j€(ﬁ>< ([;]_1-V><E))-FdS:—jw///F-JdV (2.29)

which reduces to

///(VXF)'[;]_1-(VxE)—w2F.[z].EdV

_jw%g(ﬁxH).FdS:—jw///F-JdV. (2.30)

Now assuming that H is continuous across inter-element boundaries, and that the
outer boundary is truncated with PEC backed PML, one obtains

J[[@xw i wxm-wr @ mav= o [[[F3av. e

Q
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To ensure that the assumptions that were made (that is, V x F exists and H
is continuous across inter-element boundaries) are satisfied, the finite element basis
functions will be chosen to be a curl-conforming, tangentially continuous vector basis.
In particular, the FEM basis functions used are those shown in [33]. Once the FEM

matrix is assembled, it is of the form
A(s)x(s) = b(s) (2.32)

which can be put into the form
a1 b1
Z (0" A) x(f) = Zakbk. (2.33)
i=0 k=0
by interpolation. More precisely, the reason that (2.32) is not quadratic is because
the PML materials are dispersive; therefore, once (2.32) is formed, only negligible
error is introduced by dropping the higher order ¢ terms. As will be shown in the
following examples, using a; = b; = 2 and interpolating at fin, (fmin + fmaz)/2 and
fmaz seems to be sufficient for many problems of interest.
Example 4: A microwave low pass filter is discretized and the curl-conforming,
tangentially continuous vector basis functions are used to create the FEM model. The
model contains 26044 unknowns and is simulated from 2GHz to 20GHz. Figures 2.5

and 2.6 show the S parameters for this microwave device for both the solution to the

original equation (2.32) and the quadratic approximation (2.33).
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Low Pass Filter

10

abs(S11)
=
C)I

10 ‘
6 8 10 12 14
Frequency (GHz)

16 18 20

Figure 2.5: Sy for the low pass filter. Solid — solution to (2.32), dash-dash —

solution to quadratic approximation.
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Low Pass Filter

10° T T
10_1j
8
—
23
[2]
Ko}
®
10°F
10*3 ! ! ! ! !
2 4 6 8 10 12 14 16 18 20
Frequency (GHz)
Solid — solution to (2.32), dash-dash —

Figure 2.6: Sio for the low pass filter.
solution to quadratic approximation.
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Example 5: This numerical example is a broadband bowtie antenna which is
placed on a half-sphere absorber and simulated from 500MHz to 5GHz. A total of
884670 unknowns is used to model the geometry. Figure 2.7 shows the input Si; for
this antenna for both equation (2.32) and the quadratic approximation (2.33). In this

case, for the scale shown, the curves are indistinguishable.

Bowtie Antenna
10 T T

abs(S11)
=
O|
Il

10 ! ! ! ! ! ! ! !
0.5 1 15 2 2.5 3 3.5 4 45 5

Frequency (GHz)

Figure 2.7: Si; for the bowtie antenna. Solid — solution to (2.32), dash-dash —
solution to quadratic approximation.
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Example 6: In this numerical example, a band pass filter is simulated from
3.9GHz to 4.1GHz. There are 905892 unknowns in this model. Figure 2.8 shows
the magnitude of Si5 versus frequency in the specified bandwidth for both equation

(2.32) and the quadratic approximation (2.33). Again, for the scale shown, there is

no difference in the solutions.

Band Pass Filter

abs(S12)

-3
10 1 1 1 1 1 1 1 1 1
3.9 3.92 3.94 3.96 3.98 4 4.02 4.04 4.06 4.08 4.1
Frequency (GHz)

Figure 2.8: S, for the band pass filter. Solid — solution to (2.32), dash-dash —
solution to quadratic approximation.

25



CHAPTER 3

CLASSICAL MORE TECHNIQUES

3.1 Krylov subspace techniques for linear equations

This section covers MORe techniques that operate on matrix equations that are
linear in the MORe parameter o, and that have constant right hand sides. There
are two major techniques that are commonly used for this type of problem. They
are the Lanczos [8] and the Arnoldi [15] processes, which were popularized in the
MORe community by the works [9, 10, 34, 35]. Although both techniques produce
Krylov subspaces in the reduction process, only the Lanczos process produces Padé
approximants. Nevertheless, there is no consensus on which technique is superior.

Starting from (2.5) with the output equation (2.7) and assuming a single excitation
vector (p = 1) one obtains

b1
(c"A;) x(f) = Zakbk (3.1)
=0 k=0

and

Next, define the following quantities.
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Definition 3.1 For any integer i, let

s _ 1 ifi=0
071 0 otherwise.

O

Definition 3.2 Let ¢; = max(aq, b). For any integer 7 such that 0 < i < ¢; let the

madtrices

(3.3)

e[ %

O1xn  —0io
where M; is an (N + 1) x (N + 1) complex matrix and A; = Oyxy for ¢ > ay or

bi:Ole for ¢ > b;. O

Definition 3.3 Let r be some positive integer. Then e, is a vector with all entries
equal to zero except the rth entry which is equal to 1. The length of e, conforms to

the matrix that operates on it. O

Now using the above definitions, (3.1) becomes

Cc1

D (0"™L) X(f) = e (3.4)

where

Note that (3.4) has a constant right hand side.
It is now possible to use the “Local Approximations” given in section V of [16] to
linearize (3.4) with respect to o. Unlike other linearization techniques (such as the

one shown in [12]), the brilliant work [16] permits the expanded, linearized system to
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be written in such as way as to allow the order of the matrix, whose inverse is used

as an operator, to remain at N + 1. The result is

(C—0oD)z(f) =y

with
h(f) = Lz(f)
where
[ MO M1 M2 Mclfl |
0 I 0 0
C = 0 O I 0 , D=
i 0 0 0 I |
[ i(f) | [ en+1 |
Z(Q) 0
z(f)=1| 2 |, y=| 0 [,
| Zer) | | 0]

Next, it can be shown that

[ M;' -M;'M;, MM,
0 I 0
! = 0 0 I
|0 0 0

Multiplying both sides of (3.6) by C™! gives

(I-0oC'D)z(f)=C 'y  with

28

0 0 O
I 0 O
0TI o0
0 0 |
and L=
~M;'M,, ; |
0
0
I
h(f) =L"z(f)

coZ
(e}

1

(3.6)

(3.7)

(3.8)

(3.9)



where

[ M, M, —M;'M, —M;!M, MM, ]
I 0 0 0
| 0 0 I 0 |
[ Mo_leNH
0
and Cly = 0 . (3.10)
- 0 =

Now, either the projection via Arnoldi (PVA) [16] or the matrix Padé via Lanczos
(MPVL) [27] process can be applied to (3.9) since the equation is linear in ¢ and has

a constant excitation vector.
3.1.1 Projection via Arnoldi (PVA) review

The governing equations for the Arnoldi process on the matrix C~!D with starting

vector

z1 = C ly/||C 7yl (3.11)
for ¢ steps are
C 'DZ, = Z,Un, + Un(q + 1,q)z411€] (3.12)
and
zl'z,=1, (3.13)

where Z, is the collection of the n Arnoldi vectors z, for r = 1,2,...n and Uy, is
a complex n X n upper Hessenberg matrix. These governing equations give rise to
algorithm 3.1.
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Algorithm 3.1 (g steps of the Arnoldi process)

forn=1,2,...,q do
set z,.1 = C™'Dz,
for j=1,2,...,ndo
set Un(j,n) = 2] 241
set Zni1 = Zny1 — Un(j,n)z,
endfor
set Ug(n + 1,n) = ||zn11]|
set Zpi1 = Znt1/Un(n + 1,n)

endfor ]

Once Z, is computed, z(f) can be approximated by

z(f) = Zega,(f) (3.14)

where ga,(f) € C?*! are the frequency dependent weighting coefficients for the
Arnoldi basis vectors Z, that span the Krylov subspace. Substitute (3.14) into the

first equation in (3.9) and perform a Galerkin test to give
Z! (1-0C™'D) Zga,(f) =2ZiCly (3.15)
which, from the Arnoldi process governing equations (3.12) and (3.13), results in
ga,(f) = 1—oUn,)” ZECy. (3.16)
Now note that Z['C~'y = e||C™"y/|| from the way z; was chosen in (3.11). Therefore,

2(f) ~ 2y(f) = Zy (1— 0Un,) e ||C7ly|| with hy(f) = L7z,(f).  (3.17)
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3.1.2 Padé via Lanczos (PVL) review

In [27] a matrix-PVL (MPVL) algorithm for multiple starting vectors is reported
which has the ability to produce simultaneously output for many different unknowns.
In general, assume that there are p inputs and o outputs to the matrix system. Then
the governing equation for the iterative MPVL process for ¢ steps with exact deflation

and no look-ahead are

C™'D¥, =¥, T,+ [0...0p,,; ... %, (3.18)
\_,_/ﬁ,_/
and
— T - —_— > y
(CT'D) B, =5, T+ (0...0&,,,...&,,,, (3.19)
R_/_/Ho/_/

where ¥,, and E,, are the collection of the n right and left Lanczos vectors v, and &,
forr=1,2,...n, T, and Tn are banded n x n matrices which have the same eigenval-
ues, and the integers p. and o, are the current right and left block sizes. Furthermore,
the right and left vector spaces ¥,, and E,, are constructed to be biorthogonal. These
governing equations give rise to algorithm A.1 shown in appendix A, and result in

the approximation
H(f)~H,(f)=n"T-0T) 'p (3.20)

where n € C7*?, T, € C?7 and p € C?*P are generated during the execution of
algorithm A.1. As shown in [27], assuming no deflation, the number of moments

matched in (3.20) is |g/o] + |g/p].
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3.2 Moment matching techniques for polynomial equations

This section covers MORe techniques that operate on matrix equations and right
hand sides that contain polynomial variations in the MORe parameter 0. The major
technique in this area is asymptotic waveform evaluation (AWE) [17, 36]. A newer
version of AWE is the Galerkin AWE (GAWE) [37] which, unlike AWE, does not
form Padé approximants. However, both techniques match moments, and it will be

shown that the matrix W, € CV*? where W, = [wiwy ... w,]| with

w; = Aj'bg (3.21)
Wo = Aal (bl—Alwl)

W3 = Aal (bg - A1W2 - AQWl)

min(ai,g—1)

w, = A |bi— Y Anwen
m=1
and by = 0 for £ > by plays a critical role in these processes.

3.2.1 Asymptotic waveform evaluation (AWE) review

Starting from equation (3.1) and expanding the unknown solution vector x(f)

into a Taylor series around s, gives

x(f) =) o"m, (3.22)

where each of the m,, is a N-vector moment. To obtain a Padé approximant of
order (), there must be 2¢) moments generated which means that moments up to

and including order 2Q) — 1 must be generated. Substituting (3.22) into (3.1) and
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performing moment matching gives
m, = W, for0<n<g-1 (3.23)
where ¢ = 2Q) and w,, is given in (3.21). Then let
h, = L'm, (3.24)

and denote the rth entry of the o-vector h,, as n;. Finally, for each of the o unknowns
desired as outputs, let 7 = 1,2,...,0 and form the Padé approximant by finding c|

fort=0,1,...,Q —1land d], foru=1,2,...,Q from

Q-1 ¢t r g—1
Zt:% 7% _ Za”nz (3.25)
14>, ovdy, —0

which requires solving the system

mooMm M - Mo 0 nQ
moomy My .- Mg di_1 NQ+1
My M3 My - Mgy dy o | = — | Mo+ (3.26)
| No-1 MG Mo+1 --- Mho—2 | | 41 | M2q-1 |
and

ci = nm+ding

Cy = Mo+ dyny+ding

Q-1
022—1 = 77?3—1 + Z d%_mf_l-
i=1
Then the rth desired output of the o-vector h(f), denoted by h"(f), is given by

> o'
R (f) =~ hl(f) = = .
() q(f) 1+ 2321 otdy,

(3.28)

33



3.2.2 Galerkin AWE (GAWE) review

Start from equation (3.1) and assume there is a collection of ¢ linearly independent

N-vectors W,, and ¢ scalars v, (f) forn = 1,2,...,q. Let W, = [#;W,...W,] and

define a g-vector g,(f) such that the nth component in g,(f) is v,(f). The quantities

W, and 7,(f) are chosen such that the approximation

ry(f) = Z alrf]
1=0
then
rfl =0 for [=0...q—-1
and

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

A proof is given in appendix B which shows that choosing W, = W, from (3.21)

satisfies (3.32). Of course, in practice the vectors w, for n = 1...q are actually

chosen to be an orthonormal basis for the space W,. Another difference between

AWE and GAWE is that instead of performing a Padé approximation, g,(f) is made

to satisfy (3.33) and is found from

ai -1 b1
g,(f) = (Z UiWZAiWq> (Z UkWZbk> )
k=0

=0
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Then

h(f) ~hy(f) = LTquq(f)- (3.35)

3.3 Numerical comparisons

Example 1: The horn antenna described in subsection 2.2.1 is simulated using
the MPVL, AWE and GAWE techniques (PVA was not used for this example because
L extracts only three unknowns and so MPVL will match more moments per iteration
than Arnoldi). A total of 300 iterations were performed for MPVL, and 20 iterations
were performed for both AWE and GAWE. All techniques used a single expansion
point corresponding to 1GHz. Figure 3.1 shows the impedance calculated using each
method, along with the exact solution to the matrix equation computed using an
LU decomposition. It is clear that MPVL is accurate in a much wider bandwidth
than either AWE or GAWE. However, note that even with 300 iterations (which is
15 times larger than either the AWE or the GAWE subspace generated) MPVL is
still not totally indistinguishable throughout the entire simulated band. Therefore,
this example indicates that a practical MORe solution methodology probably should
be a multipoint technique, unless switching expansion points is very computationally

expensive.
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Horn Antenna
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Figure 3.1: Impedance calculated for the horn antenna. Solid — LU response, dash-
dot — AWE response, dash-dash — GAWE response, dot-dot — MPVL response
(almost indistinguishable from LU response except for a slight deviation in zoom
mode near f = 1.425 x 10° Hz).
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Example 2: The T'M, radiation problem terminated with an anisotropic, disper-
sive PML discussed in subsection 2.2.2 is simulated using the PVA, AWE and GAWE
techniques. Since the entire solution vector was calculated with L = I, MPVL was
not used in this simulation. A total of 100 iterations were performed for PVA, and
30 iterations were performed for both AWE and GAWE; all the methods used a sin-
gle expansion point corresponding to 250MHz. Figure 3.2 shows the relative error

(measured with the 1-norm) in the solution vector for each of the methods, that is,

[Ihy(f) = h(HIlx
()

(3.36)

with L =TI so h(f) = x(f). Of course, as expected, the error increases for frequencies
further removed from the expansion point. Note that although PVA is much more
accurate, it used many more iterations. Again, as in the first example, a practical
MORe solution methodology probably should be a multipoint technique, unless (as

previously noted) switching expansion points is very computationally expensive.
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Figure 3.2: Relative error in the solution vector for the example in subsection 2.2.2.
Dash-dot — AWE method, dash-dash - GAWE method, dot-dot — PVA method.
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Example 3: The T'E, scattering problem from subsection 2.2.3 is solved. Again,
the PVA, AWE and GAWE techniques were used with L = I. For each technique a
total of 30 iterations were performed with the expansion point chosen to correspond
to 2560MHz. Figure 3.3 shows the relative error (3.36) in the solution vector for each
method with L = I. Since a small number of iterations were used for each method,
it is not surprising that the Arnoldi method is not significantly more accurate than
the other methods. Of course, for more iterations the Arnoldi method would not
stagnate like the AWE and GAWE methods would. However, as pointed out in the
previous two examples, a practical MORe solution methodology probably should be
a multipoint technique. Therefore, in the following chapter, a multipoint technique
will be presented. Even though the single point Arnoldi method is more accurate
than GAWE for a large number of iterations, the multipoint technique will be based
on GAWE. This is because of three reasons. First, for a small number of iterations,
GAWE is essentially as accurate as PVA. Second, for a multipoint technique, only a
small number of iterations will be performed at each expansion point. Third, GAWE
requires less memory to store the vectors than PVA (because, unless the higher order

terms are truncated, the system must be expanded and linearized for PVA).
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CHAPTER 4

MULTIPOINT GALERKIN ASYMPTOTIC WAVEFORM
EVALUATION (MGAWE)

4.1 General MGAWE information

In chapter 3 several single expansion point MORe techniques were presented.
Although the Lanczos and Arnoldi methods are more broadband than the AWE
methods, they require the polynomial matrix equation to be linearized with respect
to o, which results in ROM vectors that are of length ¢; (/N + 1) instead of the original
length N. In MORe simulations involving sparse matrices, the memory required to
store the ROM vectors can be greater than the memory required to store the system
matrices. Therefore, expanding and linearizing the equations and applying Lanczos
or Arnoldi is not an option; as a result, this chapter is devoted to developing a
broadband, multipoint version of the GAWE technique.

Several practical implementation issues must be addressed to make the MGAWE
technique viable. These issues include: how many expansion points to use, where to

pick them, and how large the approximation order at each expansion point should
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become before the iterative process is terminated and the MGAWE solution is de-
clared to have converged to the true solution. These issues have already been ad-
dressed for some other MORe techniques. For example, in [18] and [19] the issues are
addressed for AWE by considering complex frequency hopping (CFH). In addition,
[10, 26, 38, 39] address one or more of these issues for PVL.

Recall equations (2.3) and (2.4) from Definition 2.1. They are
Op, =J21fu—350, for vev, u=12,... fpum
and

oy =732rf —sp, for vev

where v = {1,2,...,num_pts}, num_pts is the total number of expansion points
(section 4.3 shows how to automatically determine the exact value for num_pts) and

S, is the location of the vth expansion point (sections 4.2 and 4.3 show how to

v

automatically determine this location). Again assuming p = 1, (2.5) and (2.7) can be

rewritten as
al ) bl
('A)x(f)=> o*by  and  h(f) =L"x(f) (4.1)
=0 k=0
where o is as given in (2.6) with lax restrictions such as those in (2.5).

As in GAWE, to solve the above problem assume there is a collection of ¢ linearly

independent N-vectors w,, and ¢ scalars v,(f), but now let

num_pts
= Y (4.2)
v=1
where ¢, is the order of the approximation generated at sq, (section 4.2 shows how to
automatically determine the size of each ¢,), and n = 1,2,...,¢. As before, choose
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w,, and 7,(f) so the approximation

q
x(f) ~ Xq(f) = quq(f) = Wi Yn(f)
n=1
minimizes the residual
a1 q b1
rq(f) = (0 AZ)ZV_Vn'Yn(f) _ZU by,
i=0 n=1 k=0

in the sense that if r,(f) is expressed in a Taylor series as

oo
r,(f) = Zaf}rfh
1=0

then
rfh =0 for [=0...q0 — 1
rfn =0 for [l=0...q0—1
rf]num_pts =0 fOI' l =0... Qnum_pts -
and

(4.3)

(4.4)

(4.6)

1

(4.7)

At the vth expansion point, the ¢, vectors shown in (3.21) (with A; and by corre-

sponding to o,) will satisfy the vth equation in (4.6). To satisfy all the equations in

(4.6), choose the vectors w,, for n = 1,2,...,q to be an orthonormal basis for the

space

W, UW,U---UW

dnum_pts
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where, again, W,, is given by (3.21) with careful attention given to the fact that for
each v the set A; and by must correspond to o,. Then, as before, g,(f) is found to
satisfy (4.7), that is
a1 -1 b1
P — T
g,(f) = (Z o'W, A,-Wq) (Z W, bk) (4.9)
i=0 k=0
where the requirements on o, A; and by used in (4.9) are the same as in (4.1), and

are therefore less stringent than the requirements in (4.8). Finally, as before,

h(f) ~ hy(f) = L"W,g,(f). (4.10)
4.2 Determining the orders of the subspaces g,

Although the MGAWE algorithm can initiate with any number of initial expansion
points, the author suggests that the process start with only one. Of course, more can
be added if and when they are needed. Next, this expansion point’s location must
be specified. If it is chosen as suggested in [26] (where AWE is used) then it will
be chosen in the right half plane? so the Taylor series, which is used to generate
a Padé approximation, is accurate in a wider bandwidth. However, details in [38]
(where MORe is performed by PVL) suggest that convergence should be accelerated;
therefore the expansion point should be chosen near the jw axis, with a slightly
negative real part. However, in [29] the expansion points are chosen on the jw axis.
Since the latter approach will be beneficial in section 4.3, expansion points in this

study are constrained to the jw axis in the range

j27Tfmin < 5o, < j27rfma$a (4'11)

2A different definition for s is given in [26] which maps the right half plane to the lower half
plane.
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the initial expansion point is chosen at the closest evaluation point of f to the center

of the bandwidth of interest, that is

501 = J2T [1(14 foum) /2] (4.12)

and all additional expansion points that are used are chosen at

S0, = j27rf|'wlle+wrre'| (413)

where [, and r, are the numbers associated with the frequencies located at the left and
right endpoints of the sub-band of interest, and w; and w, are the weights associated
with each (see (4.21)).

After sp, is chosen and the MORe iterative process continues to increase the
ROM size, there must be some way to determine when the process has essentially
extracted all the worthwhile information from s,, (this answers the question of how
large g, should be at sg,); then either the entire process should stop if the solution
has converged, or it should find and jump to so,,, (see section 4.3).

One way to determine the approximation order ¢, is to stop the iteration when
there is going to be a w,;1 vector generated that is mostly contained in the space
W,.. This will occur when the iterative process starts to stagnate because no new
useful information will be contained in w,.1. A similar idea [26] is to monitor the

projection of

min(aq,n

)
Y AnWaiiom. (4.14)

m=1

Yn+1 = bn

onto the space AqW,,. Note that there is no additional computational cost required

to form y,,; because it must be generated anyway for use in (3.21) through the
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equation

Wait = Ay (Yas1)- (4.15)

To determine if W, ., should be generated, consider how much of y,,; is contained

in the space AgW,, that is, form
I w (wiaw )\ w’
Vi = AW, (W AW, ) Wiy (4.16)

(again note that the majority of the computations required in (4.16) must be done

anyway for use in (4.9)), define
Il

coeff = ||y7l+1 B Y7H—1|| (417)
[ynill
and declare that sg, is exhausted
if (coeff < toly) (4.18)

for some tolerance value tol;.

4.3 Using the relative residual to automate MGAWE

After extracting all worthwhile information from s;,, one must determine if the
solution has converged or if sy, is necessary (and if so, where it should be located).
To resolve these issues, consider the following procedure using section 4.2 and the

relative residual

[l ()0

rra(f) = (4.19)

o0

After sg, is chosen, generate W,, and also, for all necessary f,, generate g, (f.)
and 774 (f,). The f, corresponding to points of s adjacent to so, are marked as
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converged for hy, (f,)
if (1, (f) < tola) (4.20)

for some tolerance value tols. If some f, is marked as converged, then f, corresponding
to the next farthest point of s from sy, is checked. This continues until (4.20) is not
satisfied for some f,. If neither f,,;, nor f,,., is marked as converged, then there
are two unconverged regions, one on each side of sy,, from which the next expansion
point, sg,, can be chosen. Pick sp, in the unconverged region that has the widest
bandwidth. After sy, is chosen, generate W,,, g,(f.) and r7,(f,) as required (where
n = ¢ + go in this case). Continue to pick expansion points and divide and test the
unconverged regions until all values of f, are marked as converged; then assign the
current value of v to num_pts.

Once an unconverged region is selected in which the next sy, will be located,
exactly where in the region should sy, be placed? That is, what should the values
for the endpoint weights w; and w, from (4.13) be? Although it may seem that s,
should be located as close to the middle of the region as possible, this is not the case
if one of the region’s endpoints is 727 f,;, exclusive or 727 f,,q.- If the region contains
neither of these extrema, then there is an expansion point on each side of the region;
therefore rr,(f) is likely to be smaller. To compensate for a region that contains one
of the two extrema, the expansion point should be biased closer to the extremum.

Therefore, to locate s, for v > 2, use (4.13) with
if ([ == 1) w; =3/4 and w, = 1/4 (4.21)
else if (r. == foum) wy = 1/4 and w, = 3/4
else w; =1/2 and w, = 1/2.

47



4.4 Numerical examples: initial examinations

The automated MGAWE process outlined in this chapter is used to simulate all
the numerical examples discussed in chapter 2. For each example in this section,
tol; = 1075 and tol, = 1072, In addition, for each example the breakeven point is
given. The breakeven point is defined as the number of frequency point solutions
which could be carried out using a traditional point-by-point sweep in the amount of
time required by the entire MORe process. Of course, this definition of the breakeven
point is unfortunately a function of the underlying solver used for the simulation.

Example 1: The horn antenna described in subsection 2.2.1 is simulated. The
MGAWE process selected the number of expansion points, their locations, and the
subspace order generated at each of them as shown in Table 4.1. Figure 4.1 shows the
impedance calculated by MGAWE along with the exact solution to the matrix equa-
tion computed using an LU decomposition. For this example, the MGAWE process
is seen to be accurate because the responses shown in Figure 4.1 are indistinguishable.

In addition, MGAWE is computationally efficient; the breakeven point is 13.

location (j2m MHz) g,
S0, 1000 13
S0, 590 22
S0, 1440 11

Table 4.1: Reduced order model characteristics selected by the MGAWE process for
the horn antenna.
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Example 2: The T'M, radiation problem terminated with an anisotropic, disper-
sive PML discussed in subsection 2.2.2 is simulated. Table 4.2 shows the quantities
automatically selected by the MGAWE process. In addition, Figure 4.2 shows the
relative error (3.36) in the solution vector computed by MGAWE with L = I. Com-
pare Figure 4.2 to Figure 3.2, and notice the difference in the scale of the dependent
variable. For this example, the time required for the MGAWE simulation results in

a breakeven point of 7.

location (527 MHz) g,
S0, 952.5 16
50, 40 19
So, 462.5 10
S0, 2.5 11
Sox 380 13

Table 4.2: Reduced order model characteristics selected by the MGAWE process for
the example in subsection 2.2.2.

20



TMZ radiation with PML
-2

10 T T T
R
- /
_4 ~ - ~
10 | y \ I
y \ I
/ \ /
/ \ I
/ \ |
-6 / \
L — [
10 / \ N SN |
/ \ 4 \ I
— / |
= | \ y \ | \ | i
g | \ / \ | \ |
[ | \ / \ | \
210 I \ \ | v
< I \ b
= I | | | I | .
\ | \ | | | |
10! \ \ | !
10 R/ ! I SRR
\ | \ | | | \ |
\ | \ | | | |
S \ | b I .
N | | |
10—12 | | | | | | |
l | Lo |
| | Lo | I'
NG Lo |/ )
10‘14 ! ! ! ! ! ! ! ! !
0 0.5 1 15 2 2.5 3 35 4 4.5 5
Frequency (Hz) % 108

Figure 4.2: Relative error in the solution vector for the example in subsection 2.2.2.
Dash-dash - MGAWE method (compare the scale to that in Figure 3.2).

o1



Example 3: The TE, scattering problem from subsection 2.2.3 is solved. Table
4.3 shows the quantities automatically chosen by the MGAWE process. Furthermore,
Figure 4.3 (which is analogous to Figure 3.3) shows the relative error (3.36) in the
solution vector computed by MGAWE with L = I. The breakeven point for MGAWE

in this example is 8.

location (527 MHz) g,
S0, 252.5 13
s0, 35 13
S0, 472.5 11

Table 4.3: Reduced order model characteristics selected by the MGAWE process for
the example in subsection 2.2.3.
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Example 4: The low pass filter described in subsection 2.2.4 is simulated. Table
4.4 shows the quantities chosen by MGAWE for this example. Figures 4.4 and 4.5
show the magnitude of S;; and S5 calculated using MGAWE along with the numer-
ically exact solution to the quadratic equation (2.33). As can be seen from these
figures, MGAWE essentially adds no additional error once the approximate system
(2.33) is obtained. The breakeven point for MGAWE in this example is 77. The
major reason that this breakeven point is so much larger than those observed in ex-
amples 1-3 is that for this example an iterative solver was used instead of a direct
solver. Furthermore, preconditioning the matrix for this example is not much more
computationally expensive than using the iterative solver to find a solution to a lin-
ear system of equations. This is because the number of unknowns for this example
is relatively small compared to the other three dimensional examples to follow (re-
call the data given in subsection 2.2.4) in which the breakeven point will be much
smaller. An additional (minor) reason that the breakeven point is so large for this
example is that the iterative solver used for MGAWE produces vectors with a residual
of tol; /10 = 1077, but when used to solve (2.33) the tolerance is only set to 107

This example will be investigated further in section 4.5.

location (j2m GHz) g,
S04 11 13
S0, 18.74 23
S0, 3.44 27

Table 4.4: Reduced order model characteristics selected by the MGAWE process for
the low pass filter.
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Example 5: The broadband bowtie antenna described in subsection 2.2.4 is
solved using MGAWE. The quantities chosen by MGAWE for this example are shown
in Table 4.5. Figure 4.6 shows the input S parameter to the antenna computed using

MGAWE and the exact solution to (2.33). The breakeven point for this example is
13.

location (j27 GHz) g,
S, 2.75 15
S0, 4.64 20
S0, 0.86 17
S04 3.74 13

Table 4.5: Reduced order model characteristics selected by the MGAWE process for
the bowtie antenna.
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Example 6: The band pass filter from subsection 2.2.4 is simulated using MGAWE
and compared to the exact solution of (2.33). Table 4.6 shows the MGAWE quantities

chosen. Figure 4.7 shows Sy, for this filter. The breakeven point for this filter is 8.

location (j2m GHz) ¢,
S0 4 8

1

Table 4.6: Reduced order model characteristics selected by the MGAWE process for
the band pass filter.

4.5 Numerical examples: further investigations

Section 4.4 covered many issues involved with a MGAWE MORe solution proce-
dure such as choosing the number of expansion points, as well as their locations and
their subspace orders. In addition, the resulting breakeven point for the computation
time of the entire MGAWE process was observed for each example. Nevertheless,
several other issues still need to be addressed. These issues include: reducing the
breakeven point (in particular for the low pass filter example), comparing the ef-
ficiency and robustness of MGAWE to a rational polynomial interpolation scheme,
and using the reduced order model to adaptively choose the frequency points at which

the ROM should be evaluated and plotted.
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4.5.1 The breakeven point as a function of tol;

The breakeven points for all the examples in section 4.4 were acceptably small
except for the low pass filter example. As discussed in that example, the major
reason is that the number of unknowns for that example is so small that computing
the matrix preconditioner is not much more computationally expensive than using the
iterative solver to find a solution to a linear system of equations. Since the number
of unknowns is fixed, the minor reason given in the low pass filter example will be
investigated. Recall that the iterative solver used for MGAWE produces vectors with
a residual of tol; /10, while the tolerance used to solve (2.33) is set to 10™%. In Table
4.7 the effect on the breakeven point of relaxing tol; is shown. In Figures 4.8 and 4.9
the S1; and Sio values are shown for the low pass filter for all values of tol; shown
in Table 4.7. As can be seen from the figures, no drop in accuracy is observed since
the MGAWE process automatically compensates for changes in tol; by using more
expansion points if necessary (see Table 4.7, column 2). This numerical example also

illustrates the robustness of the MGAWE algorithm.

num_pts
toly | num_pts Z ¢, | breakeven point
v=1
10-° 3 63 7
10~° 3 55 64
10~4 3 46 50
1073 4 48 44
1072 4 35 38
107! 5 27 31

Table 4.7: The breakeven point as a function of tol; for the low pass filter.
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4.5.2 MGAWE versus rational polynomial interpolation

The accuracy, efficiency, and robustness of the MGAWE process has been observed
in the previous numerical examples. However, given the breakeven points realized for
those examples, it is natural to ask how MGAWE compares to a simple fitting scheme
such as a rational polynomial interpolation. To this end, the function ratint found in
section 3.2 of reference [40] is used for the low pass filter and bowtie antenna examples.
The driver routine used to call ratint picks points at which to evaluate the solution
for inclusion in the approximation. These points are picked at the maximum of the
error estimate returned by ratint; the driver continues to pick additional points until
the error estimate is less than toly = 1072 throughout the specified bandwidth.

In Figure 4.10 and 4.11 the rational polynomial interpolation scheme is shown to
be very accurate for the low pass filter example. In addition, the rational polyno-
mial interpolation scheme is also more efficient than MGAWE because the number of
evaluations required (which is comparable to the breakeven point for MGAWE) is 16
for Si1 of the low pass filter and 14 for Si5 of the same filter. However, the question
of the robustness of the rational polynomial interpolation still needs to be addressed.
To this end, consider Figure 4.12 where the rational polynomial interpolation scheme
is used to compute the approximation to Si; for the bowtie antenna. In this case
note that rational polynomial interpolation prematurely terminates; therefore it is
not very robust. Furthermore, the number of evaluations performed by rational poly-
nomial interpolation for the bowtie antenna example is 15, which is greater than the
breakeven point of 13 required by MGAWE to compute the approximation shown in
Figure 4.6. Therefore, MGAWE seems to be a more desirable MORe method than

rational polynomial interpolation for two reasons. The first (and most important)
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reason is that rational polynomial interpolation is not necessarily robust. The second
reason is that in some cases MGAWE may be somewhat more efficient than rational

polynomial interpolation.
4.5.3 Adaptively choosing evaluation frequencies

Once a reduced order model is created, it is very inexpensive to evaluate the
solution at any given f. However, regardless of how small the discretization is between
fu and f,yq from (2.2), it is possible that a resonance exists between these points of
evaluation. On the other hand, once the iterative MORe process terminates, the
ROM is an accurate representation of the original system; the pole distribution of the
ROM should approximate the pole distribution of the original system. Therefore, the
points at which the ROM should be evaluated and plotted can be made a function
of the pole distribution of the ROM. This is shown for the horn antenna described in
subsection 2.2.1. In Figure 4.13 the pole distribution in the complex s plane is given
for e/“! time convention. These poles are then used to adaptively choose the points
at which the ROM should be evaluated for plotting purposes. Although overall the
resulting plot (not shown) would look like the plot shown in Figure 4.1, some details
can be lost unless the adaptive plotting scheme is implemented. This is illustrated
in Figure 4.14 where it is obvious that choosing equally spaced (f,4+1 — fu = 1MHz)
evaluation points can (and in this case does) miss information in a rapidly varying
frequency domain plot. This is just another advantage of a MORe process; the readily
available information contained in the ROM pole distribution allows for the creation

of an adaptive evaluation/plotting scheme.
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CHAPTER 5

WELL-CONDITIONED ASYMPTOTIC WAVEFORM
EVALUATION (WCAWE)

5.1 Motivation

In chapter 4 the wide-band MGAWE technique was presented. MGAWE obtains
its wide-band convergence by utilizing multiple GAWE approximations. However,
if any of the GAWE approximations were considered individually, it would only be
slightly more wide-band than an AWE approximation of the same order at that
expansion point. This is because both AWE and GAWE build their moment-matching
subspace W, through the ill-conditioned vector-generating process found in (3.21).
More specifically, AWE uses W, directly to obtain the moments given in (3.23), and
GAWE orthonormalizes W, into the basis W, which is then used in (3.29) and (3.34).

In an attempt to increase the bandwidth of accuracy for GAWE, a natural question

to ask is “Why wait until W, is generated before orthonormalizing the vectors into
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W,?” In other words, modify the process (3.21) to define the new process

W, = Aj'bg (5.1)

\/N\fg - Aal (b1 - Al{;\fl)

min(a1,g—1)

_ Al =
w, = Ay | b1 — AWom
m=1

where, at step n, W, is immediately orthonormalized against Wn_l to form w,, before
Wn1 is generated. Then replace the subspace W, in GAWE with this new subspace
W,

The author has observed that using the vectors from (5.1) in a GAWE process
can, in certain situations, exhibit a much wider bandwidth of convergence than using
the vectors from (3.21). However, the use of (5.1) is strongly discouraged for
two reasons.® The first reason is it has been found that using (5.1) can fail for
certain problems. The second reason is that, in general, vectors from (5.1) do not
match moments. This will be shown in appendix C for two cases: the first case is
when the right hand side of (3.1) is of linear or higher order in ¢ (that is, by > 1),
and the other case is when b; = 0 and a; > 2. Of course, for the case by = 0 and
a; = 1, (5.1) is valid; it is just the Arnoldi process [15].

In summary, although orthonormalizing the vectors w,, from (3.21) against W,,_4
before w, . is generated is a wonderful idea, there is a problem in ensuring that the
resulting subspace matches moments. The correct process will be shown to be the

3The author believes these reasons are actually related. He believes that a method based on
(5.1) will fail for any problem in which there is a “significant” portion of the solution vector that
is contained in the moment-matching space that (5.1) fails to capture. A rigorous proof of this
conjecture seems unessential since the alternative, correct WCAWE is available and therefore the
existence of (5.1) becomes a moot point.
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moment-matching WCAWE process in section 5.3. However, to understand WCAWE
it is first necessary to understand the link between the AWE vectors in (3.21) and

the power method applied to (3.9). This link will be shown in section 5.2.

5.2 The connection between classical MORe techniques

Although the link between AWE and PVL for linear matrix equations in infinite
precision arithmetic has been known for about a decade, the link between AWE and
Krylov subspace techniques for matrix equations with a polynomial dependence on
the MORe parameter was elusive. Furthermore, this link for polynomial systems
(which will be shown in theorem 5.1) proves to be essential in understanding the
WCAWE process that follows in section 5.3. However, before stating theorem 5.1 it

is necessary to give the following definition.

Definition 5.1 (Power method applied to (3.9)) Let W, = C 'y where C 'y
is given in (3.10). Then for all n > 1 let vgvnﬂ = C Dw,,. Furthermore, let W,
be the first N + 1 entries of the vector Vb;/'n, and let w,, be the first N entries of w,,.
Finally, let %, be the 1+ (j — 1)(N + 1) to the j(N + 1) entries of %,. These

quantities are shown in (5.2).

Wa() IN+1}:V‘%= {] IN}:WH-

$.=| " "® (5.2)

v
o

Wn(c1)

Now the crucial theorem 5.1 can be given. It provides the link between AWE and
the Krylov subspace generated by the power method when applied to (3.9) with the
matrix C™!D given as shown in (3.10).
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Theorem 5.1 (Link between AWE and the power method on (3.9)) For any
integer 1 < n < ¢ the vector w,, from definition 5.1 is exactly the same as the vector
w,, from (3.21), even in finite precision arithmetic.

Proof: Start with definition 5.1 and show that (3.21) results.

First notice from definition 5.1 and the structure of C™'D given in (3.10) that
vgvn+1(j+1) = x\"jvn(j) forn>1and 1 <j < ¢ — 1. In addition, from (3.3) note that the
(N + 1)th entry of M; times any vector of length N + 1 is always zero for 7 > 1. This
fact coupled with the structure of the last row of M ensures that the (/N +1)th entry
of \;‘jvn is zero for all n > 2. This, together with the fact vavnﬂ(j“) = vgvn(j), means the
last entry of v‘vfrn(j) =0 for all n # j.

After establishing the above facts consider vgvl =Cly, so %, = MgleNH and all
other entries of W, are zero. From the structure of the last row of M, the (N +1)th
entry of W, is —1. Therefore, Agw; — by = 0, that is, w; = A by, which is the first
equation in (3.21).

For \%’2, note that V5V2(2) = w; and Wy = —MalMlv‘h. Keeping in mind that
the (N + 1)th entry of M;W%; = 0, it is then clear that wo, = —A;' (A;w; —b;) =
A, (by — A;w;) which is the second equation in (3.21).

For %3, note that it is the case that V8V3(3) = %2(2) = w; as well as \;dvg,(z) = Wy. In
addition, %3 = —My ' (MW, + Myw,). Therefore, w3 = —Aj' (A;wy + Ayw; — by) =
At (by — Ajwy — Ayw) which is the third equation in (3.21).

In general, for v\“;rq, note that

min(c1,9—1 min(c1,g—1)

)
Wo=-M;' > MW =-M;' Y My, . (5.3)
m=1 m=1
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where the (N + 1)th entry of W, is zero because of (3.3). In addition, the last entry

of each of the W, _,, is zero except for W;. Therefore,

g—1
—Aal —bg_1 + Z Aqu_m> ifg—1<¢
Wq - c1 m=1 (54)
—A,! Z Aqu_m> otherwise
m=1

where A, = 0 for all m > a; and b,_; =0if ¢ — 1 > b;. Note (5.4) can be written

more succinctly as
( min(a;,g—1)

A7 “bi+ Y Anwen ifg—1<¢
W, = < m=1 (55)

a1
—AG? (Z Aqum> otherwise
m=1

where b,_; = 0 if ¢ — 1 > b;. Finally, the most concise way to write (5.5) is

\

min(a;,g—1)

we=A7' b1 — Y Anwen (5.6)
m=1
where b,_; = 0 if ¢ — 1 > by, which is the last equation in (3.21). a

It is well known that the Arnoldi method is superior to the power method for
generating a Krylov subspace for C™'D and C~'y given in (3.10) because the Arnoldi
method is better conditioned. In addition, since theorem 5.1 shows that the power
method on the linearized system (3.9) is equivalent to the AWE technique applied to
(3.1) which results in the process (3.21), it is natural to ask if it is possible to modify
the AWE vector generating process (3.21) to obtain a well-conditioned method for
generating a basis for W, that is directly applicable to (3.1) without linearization,
yet has the superior convergence properties of the Arnoldi method. The answer to

this question is given in section 5.3.
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5.3 The WCAWE moment-matching process

5.3.1 A broadband, moment-matching process

To be able to maintain a moment matching process and simultaneously orthonor-
malize (or even orthogonalize) w,, from (3.21) against W,,_; before w,,;; is generated,
some correction terms must be introduced into (3.21). The resulting vector generating

process is

v, = Aj'bg (5.7)

{‘fg = Aal (bleTPU1(2, 1)61 - A1V1)

min(b1,g—1)

{'fq = Aal Z (bmefPUl(q, m)eq_m) - A1Vq_1

m=1

min(a;,g—1)
- Z Aqu—mPU2(Q7 m)eq—m
m=2
where e, is given in definition 3.3, and V, and V,, are related by an n x n upper-
triangular, nonsingular matrix U (which can be, but does not have to be, chosen as

the coefficients in a modified Gram-Schmidt process to orthonormalize V,,) by the

equation

Furthermore, the correction terms Py, (n,m) are defined in appendix D on page
107. In addition, the proof that the vectors in (5.7) with the relationship (5.8) match

moments can also be found in appendix D.
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Just as the Arnoldi process provides a much more well-conditioned method for
generating a Krylov subspace than the power method, using (5.7) is a much more well-
conditioned (and therefore a more broadband) method for generating the moment
matching vector subspace than using (3.21). This will be shown in the numerical

examples in section 5.4.
5.3.2 Significance of the U coefficients

Note that no constraints have been placed on the U matrix except that it is upper
triangular and nonsingular. This freedom to choose U can be exploited to show that
WCAWE is actually a generalization of both the AWE and Arnoldi processes. In
particular, if U is chosen as the identity matrix, then it is trivial to see that the
WCAWE vectors v,, from (5.7) reduce to the AWE vectors w,, from (3.21). On the
other hand, in appendix E it is shown that it is possible to choose U in such a way
that the Arnoldi vectors for the expanded, linearized system (3.9) can be produced
from the well-conditioned vectors (5.7).

Neither of these choices for U is used in this work. Of course, on one hand the de-
sire to avoid the ill-conditioned AWE vectors is clear. On the other hand, choosing U
in such a way that the Arnoldi vectors can be produced is not only very complicated,
but also not necessarily the best choice. As will be seen in the numerical examples
section, WCAWE with U chosen as the modified Gram-Schmidt coefficients required
to orthonormalize V,, gives a more accurate solution than the PVA process on the
expanded, linearized matrix described in section 3.1.1. This is because PVA orthonor-
malizes the vectors in the space C(V+1) while WCAWE orthonormalizes the vectors

in the space CV. For the case of PVA, the leading order terms that are operated on
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by My 'M; in the matrix C~'D in (3.10) are not orthonormal even though the entire
z,, vectors from algorithm 3.1 are. To see this for a simple example, consider the case
where ¢; = 2 and N = 2 and the matrices are real. Then PVA orthonormalizes in

the space R® and WCAWE orthonormalizes in the space R%2. Assume the first PVA

vector is
F 1
0
1 1
1
= 1 -
and the second PVA vector (before orthonormalization) is given to be
I
0.1
—1
. (5.10)
1
= _1 -
which orthonormalized against z; results in
-
0.1
1 -1
Zg = —— . 5.11
‘T vaoi| 0 (5-11)
1
= _1 -

Now the projection of z; and z, onto the leading order subspace R? by the mapping
100000
[010000} (5.12)
gives

(5.13)



The angle between z,, and zy, is about 5.71°. Of course if the orthonormalization

for PVA had been performed in the leading subspace R? then

0
1
—20
—10
0
—20

Z] = and zy = (5.14)

o = O

so in this case

zm:[é] and zm:[?]. (5.15)

Essentially, PVA produces zp, and zp, as given in (5.13) while WCAWE produces
them as given in (5.15). Therefore, in this work U for WCAWE will not be chosen
as the coefficients in appendix E which produce Arnoldi vectors, but rather as the
modified Gram-Schmidt coefficients required to orthonormalize V,,. Note that this is

similar to the way in which Krylov vectors are orthogonalized in algorithm 2 in the

work [41].
5.3.3 The WCAWE algorithm

Consider algorithm 5.1. It computes, for the matrix equation given in (3.1), the
gth WCAWE approximation x,(f) with U chosen as the modified Gram-Schmidt
coefficients required to orthonormalize V,,. Note that in algorithm 5.1 the ¢ X ¢
matrices VqTAz-Vq only need to be computed once. This is where the significant
computational saving are obtained: each iteration of the last for loop requires the

inverse of a ¢ X ¢ matrix instead of the N x N matrix A(f) where ¢ < N.
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Algorithm 5.1 (WCAWE process with modified Gram-Schmidt)

V.= Aj'bg
Up gy = ||[¥4]]
V] = {’lU[_lyll}

forn=2,3,...,qdo

min(b; ,n—1)

{}n = al Z (bmelTPUI(n, m)en_m) — A1Vn_1

m=1

min(ai,n—1)

- Z AmVn—mPUQ(na m)en—m

m=2

fora=1,2,...,n—1do

endfor

Uy = [[¥a]l

v, = VnU[;Lln}
endfor

for any desired f in the range foim < f < fiaz do

o=j2nf — s
a1 . -1 b1
=0 k=0

xq(f) = Vygq(f)

endfor
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5.4 Numerical examples

Example 1: The TFE, scattering problem from subsection 2.2.3 is solved. Since
this is a small example (1276 unknowns), the problem can be expanded and linearized
so the Arnoldi method discussed in subsection 3.1.1 can be used to find the solution
vector with L = I. In addition, the WCAWE method discussed in this chapter was
also applied to find x,(f). For each technique a total of 30 iterations were performed
with an expansion point corresponding to 250MHz. In Figure 5.1 the relative errors
(3.36) in the solution vector (with L = I) for both PVA and WCAWE are shown.

In this simulation, all that is desired is for WCAWE to maintain essentially the
same accuracy as the Arnoldi process, and then to claim superiority from the fact
that WCAWE does not require the matrix equation to be expanded and linearized
(and therefore requires less memory to store the ¢ ROM vectors). However, as shown
in Figure 5.1, the new WCAWE method has a smaller relative error; therefore, as
alluded to in subsection 5.3.2, the WCAWE method (with U chosen as the modified
Gram-Schmidt coefficients required to orthonormalize V) is not only as accurate as
PVA, but is even more accurate.

Finally, recall that this is a small example with only 1276 unknowns. In the
example to follow PVA will not be applicable because it will not be possible to store

g ROM vectors of doubled length (¢; = 2) for that particular simulation.
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Figure 5.1: Relative error in the solution vector for the example in subsection 2.2.3
with ¢ = 30. Dot-dot — PVA method, dash-dash — WCAWE method.
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Example 2: The broadband bowtie antenna described in subsection 2.2.4 is
solved using WCAWE and compared to GAWE from subsection 3.2.2 with an expan-
sion point corresponding to 2750MHz. Figure 5.2 shows the condition number for the
traditional AWE vectors (WX'W,, from (3.21)) along with the new WCAWE vectors
(V,TLVn from (5.7)) forn =1,2,...,¢. As can be seen, WCAWE is indeed much more
well-conditioned.

To illustrate the accuracy of the new WCAWE method, Figure 5.3 shows Si;
for the input to the antenna, where the circles are the exact solution of the original
FEM system (2.32), the dash-dot curve is the classical GAWE solution method in
subsection 3.2.2, and the dash-dash curve is the WCAWE solution method discussed
in this chapter. As can be observed, the WCAWE method is accurate throughout the
entire simulated band.

Note that since this example is so large (884670 unknowns), the Arnoldi solution
method from subsection 3.1.1 can not be used for comparison since expanding and
linearizing the system would result in over 1.75 million unknowns, and the memory
required for ¢ = 110 vectors of that length would be greater than the available

resources.
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Example 3: The low pass filter described in subsection 2.2.4 is simulated using
WCAWE and compared to GAWE from subsection 3.2.2. The expansion points are
chosen to correspond to 11GHz. Figure 5.4 is synonymous to Figure 5.2. Again,
notice how much more well-conditioned the vectors generated for the ROM subspace
are for the WCAWE process (5.7) than they are for the AWE process (3.21).

Figure 5.5 shows Si5 for this example. As before, the circles are the exact solution
of the original FEM system (2.32), the dash-dot curve is the classical GAWE solution
method from subsection 3.2.2, and the dash-dash curve is the WCAWE solution
method. As before, the WCAWE method is again accurate throughout the entire
simulated band, while the GAWE method is not.

Since the band pass filter described in subsection 2.2.4 is successfully simulated by
MGAWE with only one expansion point in section 4.4 (that is, GAWE is successful
in that simulation), there is no reason to simulate that example in this section with
WCAWE.

After establishing the accuracy obtainable with a single WCAWE expansion point,
attention will now shift to the robustness of the WCAWE method. This will be shown

in the numerical example to follow.
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Example 4: The horn antenna described in subsection 2.2.1 is simulated using
GAWE from subsection 3.2.2 as well as WCAWE. Two different simulations are per-
formed on the horn: one from f,,;,, = 400MHz with f,,,, = 1000MHz and the other
with f,;, = 430.013MHz and f,,,, = 1000MHz. For the first simulation, the mid-
point of the band where the expansion point is located is sq = j727700MHz and for
the second simulation sq = j27715.00656MHz, which is very close to one of the poles
in Figure 4.13 located at j27 (715.006398 + j1.80)MHz. The idea is that a method
which is not very robust will stagnate more quickly (that is, the condition number will
grow more rapidly) when the expansion point moves closer to a singularity such as a
pole. The results of this investigation are shown in Figure 5.6 for sy = 727700MHz
and in Figure 5.7 for so = 727715.0065MHz. In the low frequency region the solution
is easy to capture because the field is evanescent there (the waveguide feeding the
horn antenna is designed for cutoff to be at about 700MHz). Therefore, concentrate
on the high frequency region above 700MHz. Indeed, GAWE proves to not be very ro-
bust because the iterative process stagnates (the unconverged frequency region stops
shrinking) after 17 iterations for Figure 5.6 (when the expansion point is further from
the pole), but stagnates after only 8 iterations for Figure 5.7 (when the expansion
point is closer to the pole). However, in both cases WCAWE shows it is a robust
method because it does not stagnate; the location of the expansion point with respect

to poles does not adversely effect convergence of the method.

89



Horn Antenna

F
EROO00000000000000000

MEOO00000000000000000

MEOO00000000000000000

MEOO00000000000000000

MEOO00000000000000000

BEEROO000000000000000

MEEROO000000000000000

BEERRCO00000000000000

NEEREREEOOO0000000000

NEEREERRCO00000000000

BEEEEREEO0O0000000000

[ 1] mEECO000000000

[ 1] mEECO000000000
[ 1] mEECO000000000
NEEEEEEENROOC000000000
BEEEEEEENROOC000000000
NEEEEEEENROOC000000000

NEEEEEEENROOC000000000

1000
900 -

1 1 1
o o o
o o o
[c°] N~ ©

(zHIN) swiod Aouanbaly pabianuooun

500 -

400

20 25 30 35
Iteration number

15

10

Figure 5.6: Frequency band convergence versus GAWE and WCAWE iterations for

the horn antenna with expansion points corresponding to 700MHz. Open squares —
unconverged GAWE points, closed squares — both GAWE and WCAWE unconverged

points.

90



N0C0000000000000000000000

D0000000000000000000000

D0000000000000000000000

D0000000000000000000000

D0000000000000000000000

D0000000000000000000000

D0000000000000000000000

D00000000000000000000

D00000000000000

000000000000000

D00000000000000

NOCO00000000

OO00oo00

OO00oo00

Horn Antenna

OO00oo00

1000

1
o
Lo

1
o
o
o 0

950 |-

20 25

15

Iteration number

91

10

450 -

500 -
Figure 5.7: Frequency band convergence versus GAWE and WCAWE iterations for

the horn antenna with expansion points corresponding to approximately 715MHz.
Open squares — unconverged GAWE points, closed squares — both GAWE and

WCAWE unconverged points.

(zHIN) swiod Aouanbaly pabianuooun



CHAPTER 6

SUMMARY, CONCLUSIONS AND FUTURE STUDY

6.1 Summary of the findings and conclusions drawn

In this dissertation a broad scope of MORe is given in the context of the literature
review in the beginning of chapter 1. Then a more detailed discussion of the aspect of
MORe known as fast parameter sweeping is given to set the stage for the remainder
of this work.

In chapter 2 the mathematical description of a fast frequency sweep MORe prob-
lem is outlined. Then several examples are given that are used throughout the remain-
der of this text. These examples include both two and three dimensional geometries,
and computational domains terminated with either absorbing boundary conditions or
anisotropic, dispersive perfectly matched layers. Furthermore, both radiation as well
as scattering problems are solved, and it is illustrated how a FFS MORe technique
must treat each of these cases differently for the right hand sides. Finally, simulations
are performed for computing the S parameters of microwave devices.

The discussion in chapter 3 centers around classical MORe techniques. However,
before discussing these classical solution methodologies, it is shown how to write

a polynomial matrix equation with a polynomial forcing vector as a linear matrix
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equation with a constant right hand side. Next two Krylov subspace techniques, the
Arnoldi and Lanczos processes, are reviewed. Following the Krylov subspace tech-
niques some moment-matching methods that are directly applicable to polynomial
systems are shown. These methods include both AWE and its Galerkin treatment,
GAWE. Finally, chapter 3 closes with a comparison of these classical MORe tech-
niques.

In chapter 4 the automated MGAWE process is presented. To automate the pro-
cess, it is shown how to determine the number of expansion points needed, where they
should be located, and how large the subspace order should be at each of them. These
details are then followed by several numerical examples that illustrate the accuracy
and efficiency of the MGAWE method. After the initial numerical investigation, a
deeper look is taken at the issues of how the computational efficiency depends on a
tolerance value in the process, how MGAWE compares to a rational polynomial in-
terpolation with respect to robustness as well as efficiency, and how it is important to
choose the evaluation frequencies as a function of the pole distribution of the system.

In chapter 5 the WCAWE method is presented. In the beginning of the chapter
motivation is given for the development of the technique as well as the disclosure of
a related technique that should be avoided. Then the connection between the AWE
method on a polynomial system and the Krylov subspace created by a power method
on the expanded, linearized system is given. This connection is critical in understand-
ing the underlying process followed in the creation of the WCAWE algorithm. After
presenting the WCAWE process along with a discussion of the significance of the
mapping matrix U, several numerical examples are given that illustrate the accuracy

and robustness of the process.
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In summary, for polynomial systems, the MGAWE process appears to be most
useful when there is not a large computational overhead associated with switching
expansion points. On the other hand, the WCAWE process would appear to be
preferable when switching expansion points is undesirable (for example, when a di-
rect matrix solver such as an LU decomposition is used, or when computing the

preconditioner for an iterative solver is a significant computational expense).

6.2 Future study

One area of future study that is proposed is to extend the MGAWE and WCAWE
processes to block and/or multivariable versions. For MGAWE, this extension should
be straightforward, but for WCAWE with dispersive right hand sides there are difficult
issues that will arise. Suppose there are two vectors in the block right hand side. If
one wishes to orthonormalize, during the subspace generation, vectors seeded by the
first vector against vectors seeded by the second vector then it appears there will
be extreme difficulty. This is related to the idea of orthonormalizing, during the
subspace generation, vectors from a Krylov subspace for one matrix against vectors
from a Krylov subspace for a different matrix. The reason the matrices would be
different can be seen in definition 3.2 where the matrix M; depends on the vector b;.

Nevertheless, a block version extension of either MGAWE or WCAWE would mean
that the method could handle a radiation problem in which the excitation contains
a few elements that are out of phase and/or are non-uniformly excited. In addition,
it would allow the analysis of multiport devices. On the other hand, a multivariable
extension would mean that the processes could perform fast sweep MORe in both the

frequency and angle domains simultaneously.
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The final proposed area of future study is to solve a problem in which A (s) contains
exponential variations of the ROM varying parameter. An example of this type of
problem is a fast frequency sweep for an infinite antenna array. In this example
A (s) will contain exponential frequency variations because of the periodic boundary
conditions. In this case it may be advantageous to keep a; and b; small because
of storage requirements. Using an iterative solver means that even though many
derivatives may not be generated at a particular expansion point, more expansion
points can be evaluated without being concerned about the need to perform a new LU
decomposition each time the expansion point changes (as long as the computation of
the preconditioner is not prohibitive). Furthermore, applying MGAWE or WCAWE
to problems modeled using the method of moments will also encounter A (s) matrices
that contain exponential variations in s.

Finally, WCAWE needs some more research in a couple of practical implementa-
tion issue areas. These include finding a robust, efficient termination scheme to find
the value needed for ¢, and finding a way to decrease the high number that can be

necessary for ¢ to obtain a wide-band response with just one expansion point.
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APPENDIX A

MATRIX PADE VIA LANCZOS ALGORITHM

The following Matrix Padé via Lanczos (MPVL) algorithm is taken from [27]. It
uses exact deflation and no look-ahead on the matrix C™'D with the right starting

vectors y; for 2+ = 1,2,...p and left starting vectors 1; for i =1,2,...0.

Algorithm A.1 (g steps of the MPVL process)

fori=1,2,...,pset ¢, =y;
fori=1,2,...,0set §, =1,
set p. = p and o, = o
forn=1,2,...,qdo
while ||3,|| =0 do
if p. = 1 then stop
fori=n,n+1,...,n4+p.—2set P, =1, 4
set p. =p. —1
endwhile
while ||€,,|| =0 do
if o. = 1 then stop
fori=n,n+1,...,n+0,—2set § =§, 4
set o, =0, — 1
endwhile
set u=n—p.and ¢ =n — o,
Set oy = [, and f o = [I€, |
set ¥, =, /tn, and €, = &, [tns
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set 8, = &1,

set p = C'Dv,,

set i, = max{1,n — o.}

for i = 4y,7,+1,...,n—1do
if 1 =n — o, then

set ti,n = fn,zén/éz

else
set t;, = &1 /6;
endif
set Y =Y — Pty
endfor
set ¢n+pc =

set £ = (C'D)" g,
set i, = max {1,n — p.}
for i = iy,tw+1,...,m—1do
if = n — p. then
set T;n = n.i0n/0;

else
set 1;, = &7 b, /5
endif
set £ =& — Ezfz,n
endfor
set &0, = €

if §,, = 0 then stop
foreo=n—p.+1,n—p.+2,...,ndo
if 1 <0 or 2 =n then
set ni = &5 WPy 1i/0n
else
set tni = tindi/0n
endif
set ¥, =, i — Vutn

endfor
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foror=n—-o0o.4+1,n—0.+2,...,ndo
if 2 <0 then
set £, = §OTC+Z~¢”/5TL
else
set £y = tindi/0y
endif
set €pvi = Eoutri — €nlni
endfor

if n < p, then

fori=n—-p.+p,n—p.+p+1,...

set pni = tnip
endfor
set p1 = pc
endif
if n < o, then

foror=n—-0.4+0,n—o0.+0+1,...

set i = tni-o
endfor
set 01 = o,
endif

endfor

fori=1,2,...,q9do
forj=1,2,...,q9do
set T; ; = t;;
endfor
endfor
fore=p+1,p1+2,...,q9do
forj=1,2,...,pdo
set p;; =0
endfor

endfor
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fori=0,14+1,01+2,...,q9do
forj=1,2,...,0do
set 7;;, =0
endfor
endfor
fort=1,2,...,q9 do
forj=1,2,...,0do
set mi; = OiMi;
endfor

endfor
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APPENDIX B

PROOF THAT (3.21) SATISFIES (3.32)

To start the proof, for the step n = 1, assume x(f) = 0 which then results in
by

ro(f) = — Z o%by. Therefore, ) = —by. Choose AW, in the direction (or —1
k=0

times the direction) of rj, so there is a component of the solution that can span that

part of the residual, thus forcing this component of the residual to zero as required in

the definition involving rfl =0for/=0...¢g—1 as given in (3.32). Therefore, choose
Wl == Aalbo (Bl)

and let W, = [W;]. Now assume that x(f) = W1g1(f) = W171(f), so one can find

ai

b

ri(f) =Y (o'A)) win(f) - Z o*by. Therefore, 19 = Agw7? — by = 0if 70 = 1.
For tilzeostep n = 2, again aI;:gme x(f) = W1gi(f) = W171(f), which now results
inrl = Agwiyi + Aiwi?Y — by = Agwiy? + A;wy — by, To find wo, consider ri.
Choose AyW; in the direction of r} so there is a component of the solution that can
span that part of the residual, thus forcing this component of the residual to zero as
required in the definition involving r} given in (3.32). Note that it is the case that

—Aj'rl = —W9f + Ayt (by — AWy). Since W already spans W1, there is no need

to include Wy, when constructing W,. Therefore, choose
Wg = Aal (b1 - Alv_vl) (B2)
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and let Wy = [W;W5,]. Now that a better approximation for x(f) is available, assume
x(f) = Waga(f) = Wiy (f) + Wav2(f). Following the same procedure as before,
obtain r = AgWw7? + AWy — by. Therefore, if 79 is chosen to be zero, then
gd =Y 0]" =[10]" and rJ = r? = 0. In addition, it is now clearly the case that
ri = AgWogl + A\Wog) —b; = AjWogl + A;w; — by. Note that if g} is chosen to
be gi = [0 1]7 then r} = 0.

For the step n = 3, again assume X(f) = Wags(f) = W11 (f) + Way2(f). To
find W3, consider r2. Choose AyWs3 in the direction of r2 so there is a component
of the solution that can span that part of the residual, again forcing this component
of the residual to zero as required in the above definition. Now note that it is the
case that —A;'r3 = —Wygs +Aj" (by — A;W,g} — A,Wog)). But g} = [0 1]7 and
g) = [1 0]”. In addition, since W is already spanned, there is no need to consider

W,g? when constructing ws. Therefore, choose
W3 = Aal (bg - A1W2 - AQWl) (BS)

and let W3 = [W,WoW3]. Now assume x(f) = Wsgs(f). Again following the same
procedure, ) = AgW3g) — by, and so r} = r? = 0 if 49 = 0. In addition, it is now
the case that ri = A¢Wsgi + A;W3g) — by. If v2 = 0 then ri = r} = 0. Moreover,
r2 = AW3gZ + A, W;gi + AyW;g) — by and since gd = [1 0 0]7 and g} = [0 1 0]7
if g2 is chosen to be g2 = [0 0 1|7 then 13 = AgW3 + A; Wy + AyWw; — by which gives
r2 = AgA;t (b — AiWy — AgWy) + AWy + ApyWwy — by = 0.

For the step n = 4...q, again assume x(f) = W,_1g,_1(f). To find w,,, consider

rﬁj. Choose Ayw, in the direction of rZ:} so there is a component of the solution that

can span that part of the residual, again forcing this component of the residual to zero.
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min(a1,n—1)

Note that —Ag'rp "} = =W,_1gi |+ Ag' [ baoi— > (AnWaigh ! )

m=1

where b, ; = 0ifn—1>b.. But g"™ ! for m = 1,2,...,n — 1 has already been

n—1
chosen such that the only nonzero entry is in position n —m. In addition, since W,,_;
is already spanned, there is no need to consider W,_;g"~} when constructing w,,.
Therefore, choose

min(a1,n—1)

Wo=Ag" [bii— Y (AnWaom) (B.4)

m=1
where again b, ; = 0if n — 1 > b;. Now let W, = [#;...W,] and furthermore
assume X(f) = W,g,(f). As before, r2 ... 17" 2 = 0if 72...4? 2 are all chosen to be
1

zero. Now, r* ! = Z (A W,gr ™ ') —b,_; and if g% ! is chosen such that the

n
m=0
only nonzero entry is a 1 in the last position, then r" ! = 0 as required.

Choosing W, as shown in equations (B.1) through (B.4) satisfies (3.32). Note,
however, that equations (B.1) through (B.4) are the same as (3.21). Therefore, (3.21)

satisfies (3.32).
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APPENDIX C

COUNTEREXAMPLES TO SHOW VECTORS FROM
(5.1) DO NOT MATCH MOMENTS

Recall that the vectors from (3.21) are

= A;'by
= Aal (b1 — A1W1)

= Aal (b2 - A1W2 - A2W1)

min(a1,q—1)
= Aj' [ b1 — AWy
m=1

and that the vectors from (5.1) are

= Aj'bg
= Aal (bl - Al{;}l)

- Aal (bg - Alv_’irz - Agéfl)

min(aq,q—1) _
= Ayl by - A gem
m=1
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where by = 0 for k > b;. If the subspace V/\\/'q matches moments, then it must be the

case that

A~

span(W,,) = span(W,) Vn a1l <n<g. (C.1)

However, since W, is generated from W, by an orthonormalization process, it is

always the case that

— o~

span(W,,) = span(W,,) Vn a1l <n<g. (C.2)

Therefore, the requirement given in (C.1) is equivalent to the following requirement:

A~

span(W,) =span(W,) Vn21<n<q. (C.3)
The following counterexamples show (C.3) does not hold for the cases outlined.

C.1 Case one: right hand side linear or higher in ¢

The requirement given in (C.3) can fail to be true for values of n as low as 2. For
example, although w; = Wy, assume ||W1]| = uy; # 1. Then W; = w1 /u;; and so
Wy = Ayt (by — Aywy /uy;) ¢ span(Wy). Therefore, span(\/ﬂ\/}) # span(Ws) so in

general (5.1) does not match moments for b; > 1.

C.2 Case two: constant right hand side and matrix quadratic
or higher in ¢

To see that (5.1) fails to match moments for this case, it is necessary to generate
vectors up to n = 3. As before, w; = w; and again assume ||Wi| = uy; # 1
SO Wy = wi/u1;. But now n = 2 works: Wy = —AalAlwl/uH = wy/ui;. So

span(WQ) = span(W5). Nevertheless, for n = 3 problems arise. Note that Wy
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is formed by orthonormalizing W, against wy, that is, Wy = (V’GQ — ulgﬁl) [uoy =

(WQ — U12W1) / (U11U22). Now

Wy = —Ay" (AW, + AyW,) (C.4)
= —Aal (A1 (Wg — u1ow1) / (u11u92) + Agwy/u1y)
= —Aal (A1W2/U22 + A2W1) /U11 - U12W2/ (U11U22)
¢ span(W3).
Therefore (5.1) does not match moments for the case b; = 0 with a; > 2.
As a final note, it may appear that the process might work if one tried to only

orthogonalize instead of orthonormalize. However, considering n = 4 will show that

orthogonalization also will fail to match moments.
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APPENDIX D

PROOF TO SHOW VECTORS FROM (5.7) MATCH
MOMENTS

Before proving WCAWE matches moments, several useful facts and definitions
are given. Each small fact is given without proof since they are easy to establish. In
the following, the matrix U is the upper-triangular, nonsingular matrix from (5.8)
that maps one vector basis to another. Of course, when one basis happens to be

orthonormal, U will be modified Gram-Schmidt coefficients.

Fact D.1 Let U; and U, be upper triangular matrices. Then the product U;U,
is an upper triangular matrix. Furthermore, U; is nonsingular if and only if all its

diagonal entries are nonzero. O

Definition D.1 Given an n X n matrix U and four integers 7y, %5, 71, and j, such
that 1 <4 < 4o < nand 1 < j; < jp < n, let Uy, ;) be the entry in U at the
intersection of row ¢; and column j;. Furthermore, let Uy ., j,.j,) denote the block
matrix extracted from U starting from row 4; and going through row i, from columns

J1 through 7s.

Fact D.2 Let U be an n x n upper triangular, nonsingular matrix. Then U™ is
upper triangular. Furthermore, for any integers j; and j, such that 1 < j; < js < n
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the equality (U_l)[j1:j2,j1:j2] = (Ule:jz,jlzjz])il holds.
Remark: Any entry in the block (U™)y;,.4,,1:,] 1S independent of entries in U outside

the block Uy; Therefore, if a small upper triangular matrix is embedded in

1:52,1:52]
a larger upper triangular matrix, then the block (at the position of the embedded

matrix) in the inverse of the large matrix is just the inverse of the small matrix

before embedding. This fact is needed to establish facts D.3 and D.4, and the notation

-1

[1:2.d1:d2] will be used throughout the remainder of this paper without considering

if the inverse is taken before or after the block is selected. O

Definition D.2 Let U be an n X n upper triangular, nonsingular matrix. For some
integers m, n and w where w =1 or 2 and w < m < n < n, define the (n—m) x (n—m)

matrix

-1
PUw (771 m) = H U[t:q—m-}—t—l,t:n—m—f—t—l] (Dl)
t=w

2

where [J U, = U0, 1

Remar;cleirst notice that Py, (n, m) is a function of the integers 1 and m. Further-
more, Py, (n, m) is just a composition of many blocks extracted from the mapping
U. In definition D.4 it will be obvious that Py, (n, m) is the matrix that tracks the

mappings from one vector space to another for the higher order terms in the WCAWE

process. ]

Fact D.3 Assume the integers o, & and ~ satisfy 1 < v < min(a, &). Then for all

integers j; and jo which satisfy 1 < j;, jo < min(a, @) — 7 the equality

eflPUl(a77)ej2 = e}lPUl(d’, V)ejz (D2)
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holds.

Remark: This fact follows from definition D.2 along with facts D.1 and D.2; its
physical significance is as follows. Consider some vector space that has a subspace
that is growing larger (for example, growing from « to &) with some iterative process.
Also consider two bases for this subspace. At each iteration a new vector is added to
each basis. This new vector may immediately be replaced with a linear combination
of itself with the previous vectors, but the previous vectors can not be modified (this
makes U upper triangular). Fact D.3 says the mapping Py; between the first o — 1
vectors of these two bases for iterations a > « is exactly the same mapping that
existed between these o — 1 vectors at iteration a. Fact D.3 is needed to help prove

theorem D.2. O

Fact D.4 Let U be the matrix in definition D.2. For some integers 3, m, n and w
where w=1or 2, w<m<n<mand 1< g <n-—1then for all integers j; and j,

such that 8 < 71, 7o < n — m the equality

m
T T -1
eijU'w(n’ m)ejz = ejlf,ﬁ—H H U[t—|—,37l:nfm—i—tfl,t—l—ﬂfl:nfm—}—tfl]ej2*,3+1 (D3)
t=w

holds.

Remark: This fact also follows from definition D.2 along with facts D.1 and D.2.
Just like the remark after fact D.2, all this fact says is an entry in the inverse of some
upper triangular matrix (formed from the product of upper triangular matrices U
with embedded blocks) can be found without considering entries in the U matrices

outside those blocks. This fact is needed for the proof of theorem D.2. O
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Definition D.3 Let X be a n X n upper triangular matrix whose entries are
el Pyi(j2, 1 — 1)ej,_j41 for2<ji <jo<n
Xijigo) = 1 for j1=jo=1 (D.4)
0 otherwise.

Furthermore, X is nonsingular since U is nonsingular.
Remark: The X matrix is actually never computed, but is necessary to facilitate
the proof of theorem D.3. The physical significance of X is that X.,_1,, are the
coefficients of the first n — 1 AWE vectors that are implicitly removed from the nth
AWE vector (which is implicitly scaled by X, ) to generate the nth vector in the
novel well-conditioned process that is presented in definition D.4. The key is that the
vector is generated with these components already removed and the scaling already
applied, instead of requiring these processes to be performed post vector generation.

This makes the numerical properties of the novel WCAWE algorithm far superior to

AWE. g

Theorem D.2 (Result used in the proof of theorem D.3) Let X be the ma-
trix in definition D.3. Then for some integers 3, m and n where 1 < m < n < n and

1<pf<n—m
X[ﬂ,l:n—m]PUl(na m)e’flfm = e’{PUl(T}, m + 6 - 1)en*mfﬂ+1- (D5)

Proof: This is an equality between scalars. Let ag = X3 1.0—mPu1(n, m)e,—,. Since
the proof is trivial for 8 = 1 (because the first row of X is e from definition D.3),
consider the case 2 < < 7n —m. Expand X into a summation; from definition D.3

note X(,1.5-11 = 0 so

109



Now use definition D.3 to write the scalar Xg, as

m
ag =Y _ el Puy(r,f—1)e,_gi1ef Py (n, m)e; m
r=p

and use fact D3 witha=r,a=n—m,y=0—-1,j1=1land jo=r—F+1to
obtain

n—m

Qp = Z e Pui(n —m, 8 — 1)e,_gi1e] Pui(n, m)e, m.
r=p

Now use fact D.4 with j; = r and j, = n — m to obtain

n—m
Qp = Zel Py (n-mp-1)€,_p41€]_ ﬁ+1HUt+ﬂ Lip—mtt—1,t4+f—Lig—m-i—1) En—m—B+1
r=0 t=1
n—m
which can be simplified by noting that Z e _priel_ 541 18 an identity matrix:
r=43
m
T
aﬁ_elPUl(n_m’ﬂ HUt+ﬂ 1:p—m+t—1,64+B—1:m—m+t— 1]en m—(3+1-

Now invoke definition D.2 to give

m
op =€ HUM m—B+1+t—1,t:p—m—B+1+t—1] HUtJrﬂ Lp—mtt—1,t+f—1n—m+t—1]Sn—m—pg+1-
t=1
Carefully note the products can be written compactly (after shifting the second ¢
index) as

m—+pg—1

ﬁ—e1 H Utn m—f+1+t—1,tm—m—F+1+t—1]Sn—m—g+1-
t=1

Finally, use definition D.2 again to give ag = e] Py (n,m+  — 1)e;_m_g+1- |
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Fact D.5 Consider some function f(m, ) which is summed over the data points
shown on the left in Figure D.1. Further assume the sum is reordered as shown on

the right of Figure D.1. Then

min(a1,g—1) g¢—m min(a1,j1

-1 )
Z Zf m, ) = Z Z [, 1 — j2 + 1). (D.6)

J2=1

Remark: This fact is needed in the proof of theorem D.3 so some quantities can be

accessed in a way that makes them more easily identifiable. 0
l<-mmmm-- m------- >min(a,,g- 1) I1<--m---- J == >min(q,,J/,)
e o mgo 1e
eomLO o
e o wb  eomo
I | e om0
‘ @ "@'.’D ____________ O
gm ‘ q\_l/l ‘@-. ...... [0

Figure D.1: Reordering the data access.

Fact D.6 Let U be the matrix in definition D.2. For some integers m and n where

2 < m < n < n the equality

Ulln m,lin— m]PUQ(T]:m) = PUl(na m) (D?)

holds.
Remark: This fact follows trivially from definition D.2; it is needed to prove theorem
D.3. O
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Definition D.4 (WCAWE vectors for (3.1)) Let U be the ¢ x ¢ matrix in defini-
tion D.2, \~7q be the collection of ¢ N-vectors ¥; through v,, and V, be the collection

of ¢ N-vectors v, through v, where V, = VqU_l and
i'fl == Aalbo (DS)

{72 = Aal (ble’{PUl(Q, 1)61 — A]_Vl)

Vs = Ay’ (bie{Pyi(3,1)e; + boe] Pyi(3,2)e; — Ajvy — Ay Vi Pys(3,2)e)

min(by,q—1)
v, = Aj? Z (bmerfPul(q,m)eq_m)—Alvq_l
m=1
min(a1,g—1)
= D AV nPus(d,mlegm
m=2

Remark: This definition for the vectors is the same as given in (5.7) and (5.8). O
Fact D.7 Since U is nonsingular, span(V,) = span(V,). O

Theorem D.3 (Result used in the proof of theorem D.4) Let W, be as given
in (3.21), X as given in definition D.3 and V, as given in definition D.4. Then
Vq = W X1.,4,1:q and therefore span(vq) = span(W,).
Proof: The proof is by induction.

Clearly ¥ = w;X[;,3). Therefore, span(¥;) = span(w).

For the case ¢ = 2,

¥ = A7 (bie’Pyy(2,1)e; — Ajvy) = Ag (blU[‘l}H - A1\71U[‘1}1]>

= Ao_l (b1 - Alwl) U[_l,ll] = WQU[_LIH = WQG{PUl(Q, 1)61 = WQX[Q,Q].

Therefore, Vo = W X[1:0,1:9) and span({fg) = span(Wy).
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Now assume \7,1_1 = W,_1X[1:g-1,1:¢—1] and so span(\?q_l) = span(W,_1). It will

be shown that Vq = W X[1.4,1:q- Note

min(by,g—1) min(a1,q—1)
i}q = JA()_1 Z (bme’{PUl(Q: m)eq—m) - Alvq—l - Z Aqu—mPUZ(q7 m)eq—m
m=1 m=2
liut Viem = Vq—mU[E:qum,l:qu] and furthermore by assumption it is the case that

Vq—m = Wq—mX[l:q—m,l:q—m] 50

min(by,q—1)

Vg = Aal Z (bme{PUl(% m)eq—m) - Alwq—IX[1=q—1,1=q—1]U[_1:1q71,1:q71]eq—1

m=1

min(a1,g—1)

- Z Aqume[lzq*m’l:(I*m}U[il:qum,l:qu]PU2 (q’ m)equ

m=2

Now use fact D.6 so to obtain

min(by,g—1)

i./-q = Aal Z (bme{PUl(qa m)eq—m) - Alwq—IX[I:q—l,l:q—l]U[_l:lq_1,1;q_1]eq—1

m=1

min(a,g—1)

— Z Aqu—mX[l:q—m,l:q—m]PUl(q7 m)eq—m

m=2

From definition D.2 note that U[E;lq71,1;q71] = Puyi(g,1) so A; can be absorbed into
the summation to give

min(by,g—1)

{/'q = Aal Z (bme{Pul(q, m)eq_m)

m=1

min(a1,g—1)

— ZAqu—mX[l:q—m,l:q—m]PUl(q7 m)eq—m

m=1
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Now note that W,_,, = Z wﬁeg, SO

min(by,q—1)

Vg = Aal Z (bme?PUl((Ja m)eq—m)

m=1

min(ai,g—1)

— ZA ZWﬂeﬂ [1:g—m,l:q— m]PUl(Q’ )eq*m

Next, use the fact that efX[1.g m,1:9-m] = X[g,1:¢_m] t0 obtain

min(b1,q—1)

i}q = Aal Z (bmeipPul(q, m)eq_m)

m=1

min(ai,g—1)

_ ZA ZWgXﬁlq mPUl(Qa )eq—m
m=1

Now use theorem D.2 to give

min(b;,q—1)

Vo= At | ) (buelPui(g, m)esm)

m=1

- Amwﬂer{PUl(Q: m + ﬂ - 1)equf/3’+1

m=

H
T
I

Now use fact D.5 to reorder the data access and obtain

min(b1,q—1) g—1 min(ai,j1)
V=AY (bmelPuilgmlegm) = Y D ApWji el Puilg,ji)eg
m=1 =1 je=1

which, with a change of variables of m to r, j; to r and j, to m, can be rewritten as

min(by,g—1) g—1 min(ay,r)
= Aal Z (brefPUl(qa T)eq r) Z Z Amwr—m—l—ler{PUl(Qa T)eq—r
r=1 r=1 =1

Factor out the term eI Py, (g, r)e,_, to give

min(b1,g—1) ¢—1 min(a1,r)

{"q:AEI Z b?‘_z Z AW mi1 elpUl(q7 )eq U
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Now identify each r term from 1 to ¢ — 1 and, for each term, use (3.21) to give
q—1
Zwrﬂe1 Pui(g,7)eq—r Zwre1 Pui(g, 7 —1)egrt1 = ZWT

r=1

Finally, note that X|; ; = 0 and obtain
Vg = WeX1g,q)-
Therefore, V, = W,X[1,41.q and so span(V,) = span(W,). O

Theorem D.4 (Main result) The space V, in definition D.4 matches moments.
Proof: This proof follows trivially from the well known fact that the AWE vector
space W, matches moments, along with fact D.7 and theorem D.3.

Remark: The proof of this theorem hinges on the fact that span(V,,) = span(W,,) for
all 1 < n < ¢. This does not (and should not) say that v,, = w,, for any 2 < n < g.
In fact, this is why the numerical properties of WCAWE is superior to AWE: the nth
vector can be constructed to contain essentially only new information. Finally, again
recall that the vectors in definition D.4 are the same as the equations given in (5.7)

and (5.8). O
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APPENDIX E

CHOOSING U IN WCAWE TO PRODUCE ARNOLDI
VECTORS

Before showing how to choose U to produce the Arnoldi vectors it is necessary to

give the following definition.

Definition E.1 Let j; and j; be integers that satisfy 1 < j; < (N +1) (¢ — 1) + 1)
and jo = j; + N — 1. Then E(j; : jo) is the ¢;(IV 4+ 1) x N matrix that has exactly
N nonzero entries. All of these nonzero entries are 1, and they are located such that
Epji:jo,0:8 = Inxn- O

Now the choice for U which will produce the Arnoldi vectors can be given:

Algorithm E.1 (Choosing U in WCAWE to produce Arnoldi vectors)

After v,, is generated and before v, is generated

let =1

let =2

H H
Upgn) = v ¥ + <V1PU2(3,2)> Vp-1+ (-elTPU1(3a 1)62) Uy et Pui(2,1)er
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Vo =V — U[Z,n]VZ

fora=3,4,...,n—1do
H a—1
Ula,n] = Vf‘"’n + (Va—IPU2(a + 152)90—1) Vp—1— Z UpjnVi-1Pua(d +1,2)ej-1
=2
min(a—1,c1—1) H
+ <(VamPU2(o¢+1,m+1)eam>
m=2
a—1
Va-mPus(n,men—m — Y U Vi—mPus(j + Lm+ 1)ej—m
j=m+1
H a—1
+ (—elTPul(a +1, 1)ea> > Upjmiei Pui(i+1,1)e;
=1
min(a—1,c1) H
+ (—eriFPUl(a + 1am)ea—m+1>
m=2
a—1
el Pyi(n,m—1)en—mt1 + »_ Up el Pui(l+ 1,m)ej my1
Jj=m
Vp = Vg U[a,n]va
endfor
n—1
U[n,n] = E(l H N){'/n =+ E(N +2:2N + 1) Vp—1— E ULj,n]Vj—IPU2(j =+ 1,2)6]'_1
j=2
min(n—1,c1—1)
+ > E(m(N +1) +1:m(N 4 1)+ N)
m=2
n—1
Vi-mPua(n,m)en—m — Z ULj,n]ijmPUQ(j +1,m+1)ej_m
j=m+1
n—1
+eny1 Z Ujjniei Pui(G+ 1, 1)e;
=1
min(n,c1) n—1
+ D) emwin |eTPui(mm—Nen_mi1 + Y U el Pui(G + 1,m)ej—mi1 H
m=2 j=m
~ -1
v, = an[n,n] O

Now the V, vectors, created from this choice of U, can be used to produce the

Arnoldi vectors for the expanded, linearized system given in (3.9). If z, is the nth
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Arnoldi vector, then

min(n,c1)
Zn N)va+ Z (m- )N+ )41 )N+ +N) Vi1 Pua (41, m)€n i1
min(n,c1)
Z em(NH)efPUl(n-i-1,m)en_m+1. (E.1)
m=1
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