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  ABSTRACT

In this paper we present two different, heuristic error

estimates for the Pade-type approximation of transfer func-

tions via an Arnoldi algorithm. We first suggest a conver-

gence criterion between two successive reduced models of

the order and . We further propose to use the solu-

tion of the Lyapunov equations for reduced-order systems as

a stop-criterion during iterative model order reduction.

Keywords: error estimate, model order reduction, Arnoldi

algorithm, convergence, Hankel singular values.

1 INTRODUCTION

Let us consider a problem of iteratively generating a

reduced-order model for a stable linear time-invariant state-

space system (1) and evaluate it. For simplicity we will

assume a Single-Input-Single-Output setup in the following:

(1)

Here is large, possibly sparse system matrix,

and are the control and the observation vec-

tors, respectively. Large-scale systems arise, for instance,

from the finite-element modeling of MEMS devices, and

have to be compacted for subsequent system-level simula-

tion. For a completely automatic model order reduction

(MOR), it is essential to have an explicit estimate of the

approximation error, which will determine the order of the

reduced model required to achieve a desired accuracy.

Well-established model reduction methods, such as bal-

anced truncations (BT) [1] begin by solving the Lyapunov

equations:

(2)

and then computing the Hankel singular values (HSV)

defined as:

(3)

Those yield a global error bound:

(4)

between the transfer function of the original state-

space model (1) and the transfer function of it’s

reduced order-r model (usually ). Hereby, the reduced

model is obtained by using projectors originating from the

solutions to (2). However, it is not realistic to solve

Lyapunov equations by dense matrix techniques for the

problems containing more than say, 2000 degrees of free-

dom. Hence, for higher dimensional problems, Krylov-sub-

space methods [2] or sequential strategies [3] must be used.

However, the question of an effective stop criterion for these
methods is still open. To our knowledge, only local (single-

frequency) error estimates for these methods have been sug-

gested so far [4], [5]. We propose two different “heuristic”

error estimates for the Pade-type approximation of transfer

functions via an Arnoldi algorithm [6]. The idea is either to

compute the relative error between the successive reduced

order models (a similar suggestion can be found in [7]) or,

alternatively, to compute the HSV of the reduced model in

each iteration of the Arnoldi algorithm.

We have shown numerically that both estimates work well

for two electro-thermal MEMS devices, and present here the

results for one of them, a pyrotechnical microthruster [8].

The microthruster device (Fig. 1) is based on the integration

of solid fuel with a silicon micromachined structure and is

electro-thermally ignited. We have used a two-dimensional

model, which after the FE-based spatial discretization

results in a linear system (1) of 1071 ordinary differential

equations.
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Fig. 1 Microthruster structure.
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2 CONVERGENCE OF RELATIVE ERROR

A simple approach to estimate the model error in either

the time- or frequency-domain is to compute the difference

between two “neighbored” reduced models with order

and . Let us define a relative frequency-response error

as:

(5)

where . Let us further define a rela-

tive frequency-response error between two successive

reduced order models as:

(6)

We have found that for our test cases for a

wide range of frequencies around the expansion point

( ). The frequency responses of the original model

and three reduced order models are shown in Fig. 2.

Fig. 3 through Fig. 6 compare the true error (dashed

line) to the estimate (6) (dotted line) for different frequen-

cies.

We can observe two effects: At frequencies up to

convergence occur when a certain order of

the reduced system is reached (Fig. 3 trough Fig. 5).

This means that for it is not possible to

approximate the system better with more than 10 Arnoldi

vectors. The minimal error of the approximation is then

given through . The system order necessary to reach

convergence increases towards higher frequencies. Conver-

gence occurs because one presumably reaches the machine’s

numerical precision. At high frequency, the convergence

disappears. Instead, we observe fluctuations (Fig. 6), due to

Fig. 2 Frequency response.

Fig. 3 Error estimate for .
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Fig. 4 Error estimate for .

Fig. 5 Error estimate for .

Fig. 6 Error estimate for .
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expanding the transfer function around zero frequency. For

an expansion around a higher frequency, we expect to

achieve the convergence in Fig. 6 as well.

As already mentioned, this estimate functions also in the

time-domain. Let us define a quadratic relative step-

response error as:

(7)

where and are the system outputs of the full

and order reduced system in discrete time-points

spaced apart. Let us further define a quadratic relative

step-response error between two successive reduced order

models as:

(8)

Again we have that . Fig. 7 compares the true
error (dashed line) to the estimate (dotted line)
for discrete times between  and  with .

Note that the errors (7) and (8) are not functions of time, but
rather of the system order, and are integrated over a time-
range. Hence, they are slightly more expensive to compute
than the frequency-response errors.

3 CONVERGENCE OF HANKEL
SINGULAR VALUES

Another possibility to approximate the frequency-

response error is to modify equation (4) in terms of comput-

ing the HSV of the reduced system in each iteration, instead

of the original model. In this way, after i iterations we get

a matrix-like structure:

(9)

where is the j-th HSV of the i-th order reduced model.

We have observed that after a number of Arnoldi iterations,

the largest of the created reduced order models converge

towards the HSV of the original model. Fig. 8 shows that for

the microthruster model, the reduced system of order 40

already reproduces the original 8 largest HSV. Furthermore,

in each Arnoldi iteration one new value is added towards the

end of the set (provided the are sorted in descending

order), while the beginning values slowly converge. This

means that after a number of iterations we can consider the

largest original HSV (those which don’t change any more

when increasing the reduced system order) as known. Now,

assuming the rapid decay of we can use equation (4) to

approximately set a target reduced order for the specified

error bound between the transfer functions. To give a simple

example, let us set a prescribed error to and ask:

how many iterations do we have to perform to fulfill this

error bound? In other words, when is the sum of the tail of

original HSV surely smaller than ? By observing the

matrix we see that the eighth HSV has order of magni-

tude , and all the previous values have already con-

verged. This means that no new values with order of

magnitude bigger than will appear in further itera-

tions. Hence, at worst case equation (4) leads to too high

error:

(10)

In order to correct this error, we use an HSV decay estimate

based on [9] (dotted line in Fig. 9). The estimate [9] is orig-

Fig. 7 Time domain estimate.
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inally valid for the eigenvalues of one grammian of

the symmetric system. It is based only on the knowledge of

the condition number  of A:

(11)

Since we have observed essentially the same quality of

results for the decay estimate of HSV and for the

microthruster, we use a formula (11) to correct the right side

of inequality (10). By summing all the HSV estimates with

an order of magnitude of or smaller, we get 0.14,

which is already near . In this way we have got an “indica-

tion” that we could already fulfill a prescribed error bound

with a reduced system of order 7. Indeed, for the original

system it holds:

(12)

Note once more that in equation (12) should be com-

puted by BT, and that the difference to the reduced order

model computed by Arnoldi must be accounted for as well.

For the microthruster model this difference was shown in

[10].

4 DISCUSSION

In this paper we have presented two heuristic error esti-

mation possibilities for the Pade-type approximation of a

transfer function via the Arnoldi algorithm. Both were

tested on electro-thermal MEMS models.

A convergence of relative errors allows an approxima-

tion of true model error through the error between succes-

sive reduced systems. It seems to function in both the

frequency and time domain, and the implementation

requires only the additional solution of a small linear equa-

tion system in each iteration. It is accurate at frequencies

near the expansion point (tested for ), but suffers

from fluctuations at higher frequencies ( ), and

shows a similar local character as the estimate suggested in

[4].

An observation of Hankel singular values shows that the

HSV of the i-th reduced order model are approximations of

the HSV of the original model. Hence, the global error esti-

mate (4) valid for control theory methods can be approxi-

mated without necessarily computing the original HSV. For

this, a decay estimate is necessary. We have shown that the

estimate [9], although valid only for symmetric A, could be

sufficient.

It is important to say that there is still no theoretical jus-

tification of the proposed error estimation techniques at this

time, and wether they will work in general is still an open

question. Nevertheless, the methods can be considered as an

engineering solution, and can be applied to electro-thermal

MEMS models. They allow completely automatic order

reduction of MEMS, where the time-consuming simulation

of the large-scale original model is circumvented.
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Fig. 9 Decay estimates of HSV for the microthruster.
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