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1.  Introduction (2)

The goal of MEMS computer-aided design and simulation is to accurately and efficiently represent %mm
behavior of the system in question. This allows technologists to develop a better understanding of the sys*
tem, and as a result, to quickly choose an optimal design. A hugely successful example of the application of
computer-aided design (CAD) is in the simulation of electrical integrated circuits, for which the simulator’s
output is almost the same as that produced by a real circuit prototype. This drives MEMS-designers to cre-
ate similar techniques for MEMS simulations.

.1 Some of the routes leading from a device description to a reduced order system of ODEs. The
arrows represent translations between descriptions: 1) Lumping is done by hand, either as a circuit
equivalent, or as an algebraic expression; 2) Adaptive meshing determines the size of the subse-
quent model; 3) Circuit equivalents or algebraic expressions are turned into a suitable set of ODEs;
interconnecting many of these again lead to large systems; 4) Semidiscretization of the PDEs on a

. L ) ) L ) mesh result in a set of ODEs; 5) An algebraic model reducer take a large system of ODEs and pro-
It so happens that electrical circuit and MEMS simulations are quite different in nature (see, for example, duces a smaller (and hence reduced order) yet equivalent system of ODEs.

the discussion in Ref. [1]). A circuit is rather accurately described by lumped elements such as discrete
resistors, capacitors, inductors, transistors and so on. The transient response of the circuit can be immédi-referred to as non-automatic model reduction methods, and there appears to be no way to improve thi
ately written as a system of ordinary differential equations (ODESs) with the system’s dimension of theituation. Certainly, without experience and intuition, we do not recommend their use.
order of the number of nodes connecting lumped elements in the circuit. On the other hand, the governingn the other hand, model reduction has received a great deal of attention from mathematicians, who have
partial differential equations (PDEs) for MEMS-devices do not always lend themselves to intuitive lumpingieveloped a number of methods with which to approximate large-scale dynamics systems (for a mathemat
as ODEs, and hence are solved numerically by first spatially semi-discretising them by means of finite eligal review, see Ref. [7]), and which will be referred to as automatic model reduction. There are some spec-
ment, boundary element and similar methods. This also leads to a system of ODEs, but its dimensiggtular examples where the dimension of ODEs could be reduced by several orders of magnitude, almos
depends on the quality of discretization, and it could routinely lead to ODE system sizes of between tefithout sacrificing precision, see e.g. [8] and [9]. However, there still remains a certain gap between these
thousand and a million equations, especially in the case of 3D simulations. The relation between differejgleas and common MEMS engineering practice, and the aim of the present review is to start to fill this gap.
tial equations, meshes and models are shown in Fig. 1. Our review complements Ref. [7] (where automatic model reduction is considered mathematically) on the
Recent advances in computer power allows us to solve very large systems of ODEs by brute force, oneeoigineering level.
the most striking examples here being car crash simulations (see, for example, Ref. [2]). Nevertheless, thigevertheless, the classification in this review is made on the basis of a mathematical perspective anc
typically requires parallel computations (see the benchmark report in Ref. [3]) which increases the cost @ferefore follows the structure of Ref. [7]. What we have found is that, even though different engineering
simulation drastically, and as a result, limits simulation applicability considerably. communities are facing quite different challenges, many solution techniques are related. At a first glance,
In order to facilitate computations, engineers often simplify the original rigorously derived governingthe simulation of groundwater flow in discretely fractured porous media has nothing to do with MEMS-
equations or, instead, use simple empirical models: we use the term “quick-and-dirty” (QAD) calculationglevices. It is therefore not surprising that these two engineering communities do not follow each other’s
Another approach, the topic of the present article, is to perform model reduction, that is, to formally reductork. However, the model reduction problem they are trying to solve is absolutely the same if we consider
the dimension of a system of ODEs derived from a rigorous approach before integrating it in time. it from a mathematical viewpoint.

To this end, taken from current mechanical engineering practice, there are two popular methods, and boti principle, a system of ODEs can also be solved faster if it is possible to increase the efficiency of the
are incorporated in some commercial software simulation tools: modal reduction [4] and dynamic condetifme integrator. Recently, there have been some promising results in this direction based on matrix expo-
sation [5]. The idea behind modal reduction is to approximate a dynamic system response through a lingential approximations [10], but so far there are no engineering examples, and hence this will be outside of
combination of several, often low-frequency, natural eigenmodes of the system. The second approachtlie scope of our review.
based on the Guyan method [6], and is just an intuitive engineering extension of the Shur complemenive start our review with a statement of the mathematical problem for model reduction, where we intro-
method from a stationary to a time-dependent formulation. duce terms and give them the equivalents used in the MEMS community. Then we consider low-dimen-

The main problem with all of the above order reduction methods is that their success primarily dependg#nal linear systems of ODEs. It is safe to state that, for this case, the problem of automatic model
on engineering intuition, since they are not based on a solid mathematical background. Hence, they comdgiuction is almost completely solved. It appears that almost all modern model reduction methods for

large-scale systems are based, in one way or another, on Krylov subspace methods [11], and therefore




short introduction to Krylov subspace methods is given. After that, we switch to large-scale linear systenteey destroy the sparsity of the original matrices. In other words, computationally it is necessary to work
of ODEs. The challenge faced here is that the computational time required for a model reduction of a lineaith the two original sparse matrices. The question on how to effectively compute Eq (5) for the case of
system of ODEs depends on the problem dimension (the number of equations in the system) to the culiylov subspace methods is discussed in Section 4.2.

power. Computationally speaking, the algorithms for model reduction appropriate for small linear systemsThe main problem with Eq (4) is the high dimensionality of the vector , which is typically equal to the
do not scale to large systems. Here one can say that, in principle, the answer to automatic model reduc§®Bduct of the number of unknowns in a system of PDEs to be solved by the number of nodes introduced

is known but the challenge remains as to how to compute it in reasonable time. Finally, we take a look @{iring the discretization process. This in turn leads to the high dimension of system matrices and finally to
non-linear systems of ODEs. Here success depends on a particular problem, and there are almost no ge8+uge computational cost to solve the system’s response.

eral results. Some algorithms for model reduction exist but, in contrast to linear systems, unfortunately, :5 performing model reduction on Eq (4), the hope is that, for many systems of ODEs of practical impor-

seems that human intervention is inevitable. tance, the behavior of vecter intimey) , is effectively described by some low-dimensional subspace as
It should be noted that we have not tried to reflect the priority of research groups in this field. In mang|iows

cases, our citations should actually be read as faeexample,Ref ... . ‘
. . x =Xlk+e,z00, k«n 6)
2. Mathematical Statement for Model Reduction

. . . . . . . Eq (6) states that, with the exception of a small error described by vector € [ Dx, the possible movement
In the present review we limit our consideration to a system of first order ODEs, written in the form

of the n-dimensional vector x belongs, for all times, to a k-dimensional subspace, with & much smaller
E % = Flk+f 1) than 7, and is determined by an n x k transformation matrix JX. The matrix X is composed from &k »-
dt dimensional vectors that form a basis for the reduced subspace, and the k-dimensional vector z represents

where the unknown vector x(¢) 00" contains unknowns functions in time, £E0 0" xO" and anew low order set of coordinates for the given basis.

FOO"x0O" are system matrices, typically sparse and often symmetric, and the vector 0 0" describes The task of model reduction is to find such a subspace for which the error difference in Eq (6) is minimal
the system load. If the matrices contain constant coefficients then the system of ODE:s is linear, and other- according to some norm
wise we will call it H.Ho:::omﬁ.. A.m:_.oz% mwo&n:m ﬂ.E‘m is not ooﬁwor HW.QR is an .5855&58 case when owom. mine(n)| = minlx(r) - X Z(2)| %
ficients depend on time explicitly in which case it is termed a linear time-varying system [12]). Mechanical
systems in motion, as well as general electrical circuits, are usually described by systems of ODEs of sec- Note that in Eq (7), we have functions in time, so that the norm in this case is represented by some integral
ond order in time. It is a simple matter to convert them to the form of Eq (1) by increasing number of over time [13]. When the subspace is found, Eq (4) should be projected onto it, and this projection process
unknowns and equations by a factor of two, e.g., by treating the first derivatives in time as unknown. Thus produces a system of ODEs of reduced order k
> % dz+h ®
mMiZicf ik = 2) di
&NN dt

which can then be used later on, perhaps in another simulation package.

together with th iabl = dy/dt,b . . . . N . i
ogether with the fiew vaniables 2 v ecomes The physical background for model reduction so far is that the discretization grid used to solve the origi-

nal PDEs is far from an optimal basis to represent the solution of the PDEs. From this point of view, the

>o§w DWN == MM 0% + “ (3) model reduction according to Eq (7) is, in a sense, similar to adaptive grid generation [14]. However, the
J. J. opportunities of model reduction to minimize the problem dimensionality are much greater, because adap-

which is again in the form of Eq (1). In some cases the methods treated in the review can be generalized to tive grid generation still deals with local shape functions (with local support), and the basis for the low-
second order systems of ODE directly. dimensional subspace in Eq (6) is formed from global domain functions, that is, each vector includes a con-

. . L o . . . .__tribution from the entire geometrical domain (much as eigenvectors do). Form this point of view, model
The naming of system matrices as well as the notation is quite different for different engineering disci- . - . . L .
. ) ) reduction complements adaptive grid generation, or makes an alternative in a sense as will nhow be
plines, but we hope that this does not pose an insurmountable problem. In order to perform a model redugc-

. . e g escribed.
tion step, we rewrite Eq (1) from an implicit to an explicit system of ODEs ) ) ) ) o ) o
i An adaptive grid generation process starts with some initial grid, and then the grid in different parts of the
X

— =Alk+b 4) computational domain gets refined or coarsened based on a priori or a posteriori local error estimators [15].
dt A model reduction strategy requires a fine initial grid, for which it produces an effective global low-dimen-
where sional basis, based on global error estimators. Then, in order to choose the best computational strategy, it i
O ., ., O ., necessary to compare the time taken for model reduction of a system of ODEs built on the fine grid with the
4=E [F,400 x0 and b= E [f, 500 (5) sum of times for adaptive grid generation and the subsequent model reduction of the refined grid system of
It is necessary to stress that Eq (5) should be read in a mathematical, and not in a computational sefi3BEs.
Mathematically this implies that matri& is not degenerate (i.e., it is invertible) and that this transforma-  \We now take the next step and put the model reduction problem into a more general form. Often, engi-
tion is possible in principle. If matri€  is degenerate then we do not have a system of ODEs, but ratherers are not interested in the solution of Eq (4) over the entire computational domain, that is, for values at
system of algebraic-differential equations (ADEs). From a computational point of view the operations in
Eq (5) are highly disadvantageous: first, they are prohibitively expensive for large-scale systems, second,



all nodes, but rather in only a few of their combinations. Control theorists [16] take this into account and

convert Eq (4) to m&lanm_@:wg
0dt (10)
O o -~_-
D= o+ 5 © O y=ck
m y=Crk The input vector # in Eq (10) is exactly the same as in Eq (9), but the output vector y [J o s just some

approximation of the original vector y [ 0% This transformation is sketched in Fig. 3.

Equation (9) treats the system as a “black box”, which would the case when a system’s high-dimensional
internal state vector x, governed by ODEs, is not directly accessible to an external observer. The observer

can influence the system state by some input functions, specified by the vector # O 0™ , and which are dis- Before: = c
tributed to the internal nodes in accordance to the scatter matrix B 0 0" x 0™ . The number of input sig- -
nals m «n is typically small, and this means that matrix B has a small number of columns. On the other n
hand, the observer is interested in only a few outputs, specified by vector y 0 0” with the dimension 4 ' &
p «n. The relationship between required outputs and the system state is given by the gather matrix
C 007 x0O". As a result, we have a high-dimensional system of ODEs in relation to vector x, the system
1 [1= e

state vector, which is governed by a small number of external inputs, and from the viewpoint of an external

observer, contains a small number of relevant outputs. We will not describe here the well-known system- After:
theoretic results of this equation, such as zero state and zero input, but refer the curious reader to the control

theory literature [16].

=4 ‘BT B

Eq (9) is a generalization of Eq (4). If mat#x  in Eq (9) represents a single vector, equal tad wvefctor

Eq (1), then vector  will contain only one element, a single input, and we can equate it to a step function. User Input  System Output
Now let us say that matri€ is an identity matrix, thatyiss x , then we have a special case w. r. t. the, ) ) ]
original system of ODEs, which we call “single inpabmpleteoutput” or SICO. Fig. 3 Sketch of the model reduction equations (9) before and (10) after the model reduction step. The
The multiple input case holds when matix  has several columns corresponding to multi-load simula- dimensions of the system Bmz_owmm ! @o_ and Sms_:ﬁmSm_ state vectors: wa are m_@.s_:-
cantly smaller after model reduction. The input veetar [ and output vedior] remain

tions, or when the system is consecutively subject to a variety of loads distributed to different nodes. In this

case, each function in vectar  has a “step” shape limited by the application time of the load (see Fig. 2). the same size.

The quality of the model reduction step of Eq (10) is determined by a norm

u u u
. minly()) =y = minly() - @) (11)
"3 which ideally should hold for any input vector # 0 0" . The difference between Eq (11) and Eq (7) is that
Uy now we search for a reduced subspace given by Eq (6) to minimize the difference between given outputs
u; only, and not for the whole state vector. Certainly, if we have found a subspace that minimizes Eq (7), then
L Eq (11) will be satisfied automatically. However, we expect that a subspace minimizing Eq (11) will have a
* ¢ ** * ¢ t much lower dimension than a subspace minimizing Eq (7).
Ly I Ly 1y

If matricesB andC both consist of a single column and row respectively then the system is termed Sin-
Fig. 2 Different input functions, often provided in engineering simulation programs. a) A step functiond!e-Input-Single-Output (SISO), otherwise it is referred to as Multiple-Input-Multiple-Output (MIMO).
activating atz, . b) A vector of step functions, each activating at a different time. c) A piecewise lin- A dynamic system is often considered in the frequency domain, when the Laplace transform operator

ear function. L{} is applied to the input and output vectors [13]
o . : A L{y(@} = Y(s), L{u()} = U(s) 12)
Matrix C is usually formed by picking only those rows from the unit matrix which correspond to chosen
nodes. In this case, vectpis just a small subset of the state veator . and where the relationship between input and output is described by the transfer function
The problem of model reduction in the case of Eq (9) consists in the reduction of the dimension of the Y(s) = G(s) U(s) (13)
state vector to order«n , while retaining the same number of inputs and outputs Most of the results in model reduction obtained so far concern the case of a linear system of ODEs and

where all the matrices of Eqs (4) and (9) are composed of constant numbers. In this case, the transfer func
tion is readily expressed via the system matrices as

G(s) = COsi-4)" B (14)



3. Small Linear Systems

Control theory has a very strong theoretical result for stable systeamghose systems for which the real
parts of all the eigenvalues of the system matrix in Eq (9) are negative. Each linear dynamic system (9)
hasn so-called Hankel singular values,  (see Ref. [17] for mathematical details), which can be computed
if one solves two Lyapunov equations

AP+pPH = -BB" (15)
A"mrom = " (16)

for the controllability grammian P and observability grammian Q . Then the Hankel singular values of the
original dynamic system are equal to the square root of the eigenvalues of the product of the controllability
and observability grammians

o; = /A (PLD) (17)

Once these values are known, there are a number of model reduction methods with guaranteed error
bounds for the difference between the transfer function of an original -dimensional system and its
reducedt -dimensional system, as follows

l6-Glo<2(0,y,+...+0) (18)

provided that the Hankel singular values have been sorted in descending order. Note that this equation is
valid for arbitrary input functions. This means that model reduction based on these methods can be made Fig. 4 Decay of normalized Hankel singular values for four typical applications (from Ref. [7]). We expect
fully automatic. A user just sets an error bound and then, by means of Eq (18), the algorithm finds the these curves to also be typical for MEMS.

smallest possible dimension of the reduced system, &, which satisfies that bound. Alternatively, a user
specifies the dimension of the reduced system and the algorithm estimates the error bound for the reduced
system.

them, one way or another. It should be noted that those iterative methods for solving a system of linear
equations that are based on Krylov subspaces have been included in the list of the ten top algorithms of th

. . . ) 20th century [11].
Another practical consequence of this result is that the success of model reduction depends only on 5% Krylov subspace of -th dimension of the matdix] 0" x 0" and veetgra” is defined as a sub-

decay rate of the Hankel values. Fig. 4 shows examples of the behavior of Hankel values for a few typical . . L
= . . . . . . m%mom spanned by the original vector and the vectors produced by consecutive multiplication of the
applications. If we can estimate this decay rate for a particular application, this would give us a complef

answer as to the extent to which we could reduce the original system [18][19]. matrix 4 to this vector up té times, or
The SLICOT library implements three methods, a Balanced Truncation Approximation, a Singular Pertur- NME. v) = span{v, A, ..., 4

bation Approximation and the Hankel-Norm Approximation, as well as including a special Umso:ﬂ:m_.x_,rm resulting vectors form a basis for k-dimensional subspace. However, if we compute them directly as

problem [20][21]. All three methods and their variations are extensively used in control theory and there are . . . .
. S . . written, then, because of rounding errors, they would become computationally linearly dependent even for
numerous examples of their applications. However, they are out of the scope of the present review, sinC

due to computational reasons, they are limited to relatively small systems. am_&:\mq small k.
The time required to solve the Lyapunov equations as well as to perform a singular value decompositidal ~ Arnoldi and Lanczos algorithms to build the Krylov subspace

grows as the cubic power in the number of equations, Qa‘mv . Hence, if the system order increaseé numerically stable procedure for cc__g_:m a Krylov subspace (19) is an Arnoldi process [11][22][23]. It

twice, the time required to solve a new problem will increase about eight times. In other words, evegenerates an orthonormal baskO 0" x O for the Krylov subspace and a Hessenberg matrix,

though the results described above are valid all linear dynamic systems, practically we can use them i, O 0%x 0", related to the original matrix as follows

small order systems only.

The border between small and large systems depends on the computer power available and of course it
steadily grows. According to Ref [20], the model reduction of a randomly generated linear system of ordéfhe Hessenberg matrix for the Arnoldi process is made of an upper tridiagonal matrix plus one diagonal
512 takes 76 seconds on a 400 MHz Pentium Il processor PC. Since processors now promise 1.2 GHz clbelow the main diagonal. It can be considered as an orthogonal projection of the matrix 4 onto the given
speed, this enables us to define current small systems as those with state vector dimensions in the randérgfov subspace.

1000 to 2000.

oy (19)

XAX = H, (20)

The main disadvantage of the Arnoldi method is that each new Arnoldi vector should be orthogonal to all
4. Introduction to Krylov Subspaces previously generated vectors. This means that the computational cost grows disproportionately with the

. . .. . .
It happens that, in many cases, very good candidates for the required low-order subspace of Eq (6) mv@m:m_o: of the subspace. The current alternative is to use a Lanczos algorithm, where the subspace (1¢

Krylov subspaces, and almost all modern model reduction methods for large-scale systems are cmmmg_momo:m_gmﬁmg as aright Krylov subspace. In addition to it, and in parallel, the left Krylov subspace



K A" w) = span{w, 4" O, ....(4")" "' By @1

is *m_mo generated, where the vector w can be equal or not to vector v, depending on the applications, and
A is the conjugate transpose of the matrix A4 .

The Lanczos algorithm produces a pair of biorthogonal bases for subspaces (19) and (21) contained in 2

matricesX and’ such that
Y X =1 (22)

and a Hessenberg matrix /; that is in tridiagonal form. This means that, for any iteration of the algorithm,
it is necessary to deal with just two previously generated vectors. The Lanczos Hessenberg matrix is related
to the original matrix as

One difficulty with the block-Krylov subspaces is that it is more difficult to predict the number of multipli-
cations in Eq (24) and (25) in order to generate a k -dimensional subspace. Typically, ¢ is equal to the quo-
tient of £ by the number of columns of the matrices B or C, but the exact answer depends on the existence
of linearly dependent vectors in (24) and (25).

Computing the inverse of the system matrix

One computational advantage of all Krylov subspace methods is in their iterative inafueperform
them a user only needs to provide consecutive matrix by vector multiplications. This allows us to exploit
the sparse form of the matrices, and to create fast application-specific implementations for the required
A ¥ product. The driver algorithms do not have to know the details how mftrix  is stored in the com-
puter system.

For model reduction problems, the Krylov subspace (19) is actually based on the inverse of the system

* matrix 4 . Recalling Eq (5), this means that for both the Arnoldi and Lanzcos processes it is necessary to
Yy MK = H, (23)
compute the product
and can be considered to be an oblique projection of 4 onto the subspace (19) while remaining perpendic- ~1
. . . L F [ED (26)
ular to subspace (21). Fig. 5 illustrates the orthogonal and oblique projections of a vector. Because the
We now discuss, using this example, the advantage of the iterative structure of the Krylov subspace meth-

ods.

F andE are large-dimensional sparse matrices, but the Qmm_:mm might be a dense matrix, and the
computational cost to compute this product is very high due to the Qmwm:om of the matrix inverse. Hence its
direct computation is unwise. It is much more efficient to compute the Emm_cmm B . First, before the
procedure, one performs an LU-decompositio#' qbr equivalently, a Cholesky decomposition for a pos-
itive definite matrix, see [23]), which can take into account the sparse strucfure of

F=LU 27)

where L and U are lower and upper triangular E&Eo@m, respectively. This is costly, but we will require L
and U many times. Then, each multiplication F~ "ED s performed in three steps:

1) E is multiplied by v, @ = E [I. E is sparse and so this is a potentially a fast operation.

2) a) The linear equations L [b = a are forward solved, so that b = L' [E . Since L is lower tri-
angular this is again a fast operation.

b) ,;m _Qmowéma solution of the linear equations U [k = b then gives us the desired product
U ED. Again, since U is upper triangular, this is a fast operation.

Fig. 5 mxm::u_m of an orthogonal and m: oblique projection of a vector. The disks qmvamm:ﬁ subspaces
D 00" of the real linear spaéé "  of a model reduction problem. A @m:mﬂm_ vecidn” is
Qo_moﬁma onto a subspace. The left figure illustrates m: orthogonal projectjdn of ) . The figure
on the right demonstrates an oblique projectigy O m__ determined by the “shadow” cast by an
orthogonal projection o  onto a second subspaeg] _u

Once again, the mco<m speedup is possible only because higher level algorithms do not need to havi
access to the full matrix ™' ; otherwise we would have no option but to compute it.

When the dimension of  grows large enough LU-decomposition is no longer useful because it takes too

Lanczos algorithm is based on three-term recurrences, it is faster for large k. However, it is computation- much time. Hence, the second step above changes to

ally less stable than the Arnoldi process: a typical trade-off of accuracy vs. efficiency. The Lanczos and 2)
Arnoldi algorithms are mathematically equivalent if the matrix 4 is symmetric and the starting vectors v
and w are same, in other words, when the Krylov subspaces (19) and (21) are equivalent.

The linear equations ' [h = a are solved by an iterative method, b = F TED. I lucky, an iter-
ative method can be reasonably fast for a particular /' matrix.

Iterative methods for the solution of a system of linear equations are also based on Krylov subspaces, anc
Instead of just one starting vector , one can take a number of starting vectors expressed by tBe matrixit is important not to confuse them with those reviewed in the present paper. The modified step above
This leads to a generalization of the Arnoldi and Lanzcos algorithms to the so-called block-Arnoldi andimplies that, for any computation of the subsequent Krylov vector, it is necessary to use second level itera-
block-Lanzcos algorithms [24][25]. Here we define the appropriate right and left Krylov subspaces as  tions to solve the linear system of equations. In addition to books [22] and [23], an excellent object oriented
template-oriented review of Krylov-based methods for the solution of linear systems can be found in [26].

r — q
Ki(4,B) = span{B, A [B, ..., 4" [B} (24) It should be noted that the success of iterative Krylov methods for a linear solve step depends on the struc
Koy = cA' T X 25 ture of the matrix, and for the general case, their effective use requires finding a preconditioner, another
w4, €) = span{C, e ()00 (25) matrix P , which transforms the original linear system to an equivaldit (b = P [k , but which has



superior convergence properties. For a discussion on the importance of preconditioning for solving linear
systems that are generated through the discretization of PDEs by the finite element method, refer to Ref.

K -s,0™ (4 -s,n71 c'H (33)
[27]. ]

O

5. Large Linear Systems matrices H; , X and Y produce the reduce system

As was already mentioned, algorithm time complexity limitations do not allow us to directly employ con-
trol theory algorithms for large-scale systems. As a result, most of the practical work in model reduction of
large linear dynamic systems have been tied to Padé approximants of the transfer function (14), and WRich will match 2k moments of the original dynamic system [24][25][30][31]. Note that Eqs (32) and (34)
start the present section with them. These methods are computationally feasible but, on the other hand, ﬁmn&&\ simplify for the case of an expansion about s, = 0, and that there are computationally more effec-
do not provide a global error estimate. Recently, there have been considerable efforts to find computatiaire formulas for producing the reduced matrices B and C.
ally effective strategies in order to apply methods based on Hankel singular values to large-scale system

A=H'QU+s,H,), B=H'¥ Qd-s,1) (B, C = CX (34)

and we briefly review them in the second part of this section.

5.1  Approximating a Transfer Function by Padé and Padé-type Approximants
For the case of Single-Input-Single-Output (SISO) systems, when matrices C and

Jn..:m Lanczos algorithm produces a reduced system closer to the original one, because the number o
moments matched here is twice that of the Arnoldi process. This has a simple explanation. Model reduction
by the Arnoldi process does not take into account matrix  at all, while model reduction by means of the

both are composkanczos algorithm is made by an oblique projection on the right Krylov subspace (31) that takes into

of a single column and row accordingly, the transfer matrix (14) is a scalar rational function which ca@ccount the left Krylov subspace (33).

always be expressed in the factored form as

a(s—z;)...(s—z,_,)
(s=pp).(s-p,)

G(s) = (28)
where z; and p; are zeros and poles of the transfer function and a is a constant. In the Multiple-Input-Mul-

tiple-Output (MIMO) case a transfer matrix is of dimension p by m, each element of which being a function
of the form of Eq (28).

The idea of Padé [28] and Padé-type [29] approximants is to find a rational function of smaller dimensi
k, G(s), which retains the essential behavior of the large-dimensional original rational function. This i
formulated in terms of moment matching in the expansion of the transfer functions around some giv

numbers, (in most applicationg = 0 ),
Gs) = S my(s—s,)’ (29)
i=0

that is,

m, = \m: fori =0,...,q (30)

1

Padé approximants match the maximum number of moments, ¢ = 2k, while Padé-type approximants
match first ¢ <2k moments. This is easily generalized to the multiple input - multiple output (MIMO) sys-
tem, where all moments will be p x m matrices.

It happens that the Arnoldi process for the right Krylov subspace
Ki{(4-s,0", (4-s,))" B} 31)

produces such matrices //, and X such that the reduced system

A=H} QU+s,H,), B=H X Qd-s,I) B, C=COX (32)

implicitly matches the first £ moments in Eq (29), that is, the Arnoldi process implicitly produces a Padé-
type approximant of the original transfer function (14). On the other hand, if one performs Lanczos algo-
rithms for the right (31) and left Krylov subspaces

Still, both approaches are based on moment matching and they are by nature local, in the sense that, i
general, they make a good approximation of the transfer function (14) near the expansiep point  only.
This can be improved by multi-point expansion, i.e., expanding the transfer function (14) about several
points s; and requiring the reduced transfer function to match the first moments at all expansion points.
This idea was implemented in the so-called Rational Krylov method [31][32], where the Arnoldi or Lanc-
zos algorithms were applied to the union of the Krylov subspaces (31) and (33) for different values of
The main methodological challenge here is to decide how to choose the expansion points, and to determing

oﬁoé many are needed. Computationally this adds an additional load. If one uses LU-decomposition for the
inverse of the system matrices (see Section 4.2), then in this case it is necessary to perform an LU-decom
dposition for each value of,

The original dynamic system can be stable, that is, when time goes to infinity the values of  remain finite
(bounded), and passive, which is to say, the system does not generate energy. If so, then it is important
especially in electrical circuit simulations, that the reduced system also possesses these properties. Unfortu
nately, both the “out-of-the-box” Arnoldi and Lanczos algorithms do not guarantee this, and special
attention should be paid to preserve the properties of the original dynamical system. It happens that the
Arnoldi process is mathematically more simple than Lanczos algorithm (this is stressed by their names,
process and algorithms, respectively). Probably for this reason, engineers often choose the Arnoldi process
the coordinate transformed Arnoldi [33] for stable model reduction, and the provably passive model reduc-
tion method “block Arnoldi plus congruent transform” or (PRIMA) of Ref. [34]. On the other hand, mathe-
maticians still bet on the Lanczos algorithms [24][25][35][36], because, as was mentioned above, it takes
into account the observability matr&  and it matches twice the number of moments of the Arnoldi pro-
cess. They seem to prefer, while preserving the properties of the original dynamic system, to match as
many moments as possible so as to obtain the most accurate representation for the same dimension  of t
reduced model. It is also worth noting that, even though when some algorithm provably produces a passive
reduced model, this does not mean that its computer implementation will really produce a passive model in
practice, mainly because of the inevitable numerical rounding errors [24].

Now let us return to the original case of model reduction for systems (4) to (8). From a control theory
viewpoint we term it Single-Input-Complete-Output or SICO. It so happens that if system (4) is obtained
during the discretization of a diffusion-convection partial differential equation, then the Krylov subspace
(31) with s, = 0 is a very good choice for the lower dimensional subspace in Eq (6) [8][9][37]-[43]. In
this case, the model reduction step (8) can be viewed as an approximate solution of the original system (4)
because it is possible to recover the solution for all of the original unknowns by means of Eq (6). This work



has been superseded by the use of a Krylov subspace (31) to approximate the matrix exponential [10][2Bf use of low-rank grammians, is also much faster because there are special algorithms that can take thi
but mathematically this is identical with a Padé-type approximant (32) when the @atrix s just discardednto account [62][67].

We next list examples of the papers in which Padé and Padé-type approximants via Krylov subspacé very simple case of model reduction arises when the inputs are the same as the outputs, ad matrix i
methods have been used for the model reduction of a linear system (9). The papers come from several disnmetric. Note, that if matrice® aftd  in Eq (1) are symmetrickand s positive definite, then by an
tinct communities: appropriate coordinate transformation one can obtain Eq (4) with a symmetric satrix ~ [33]. In this case,
« The largest community comes from electrical engineering where model reduction is mostly employed tf¢ grammians are equal to each other because Egs (15) and (16) become the same: then it is necessary
deal with the so-called microchip interconnect problem [44][45][46]: Mixed surface volume for 3D Solve just a single Lyapunov equation and there is no need to perform balancing. Another approach is to
interconnect [47], Lossy multiconductor transmission lines [48], 3D interconnect and packaging basedse, instead of two Lyapunov equations (15) and (16), the Sylvester equation [68]
on an alternate Partial Element Equivalent Circuit (PEEC) formulation [49], Coupled lossy transmission AR+RH = -B[C (35)
lines [50], Magetoquasistatic analysis for packaging parasitics with skin effect [51], PEEC model of an
electromagnetic problem [52], Electromagnetic devices modeled by linearized Maxwell equations [53]to find the so-called cross-grammian R . It happens that in the case of a linear dynamic system with a sym-
Full-wave electromagnetic analyses [54], and Electromagnetic wave propagation by the finite elementetric transfer function, the Hankel singular values are equal to the eigenvalues of the cross-grammian, and
method (FEM) [55]. The actual number of publications on model reduction here is much greater. here there is also no need for balancing. This is always true for any SISO system, because in this case the

» The ideas from electrical engineers have been used for the model reduction of wave-propagation-lik@nsfer function is a scalar. In the MIMO case, one can use a transformation described in Ref [68] in order
U_\OU_QBMH The Helmholtz QDCNEOD for exterior structural acoustics UV\ FEM _”wmwu__ Neutron noise qO_‘HO convert any linear Q%SNBWO system to one with mmv\aaoqwo transfer function.

nuclear reactor by the finite difference method [57], Aeroelastic analyses of turbomachines [58]. . . . . . .
« Another community solves the advection-diffusion PDE, which arises in a variety of engineering disci- S°Me methods for model reduction based on solving large dimensional Lyapunov equations are imple-

plines. They mostly deal with the single-input-complete-output (SICO) case discussed above. Im@m:ﬁma in the library LYPACK [69] (it requires MATLAB). As mentioned in Ref [69], Lyapunov equations
model reduction is at the beginning stage if we compare the number of papers in which model reductié order more than 12000 were solved by LYPACK within a few hours on a regular workstation.

is used to the total number of papers on the solution of advection-diffusion PDEs: Advection dispersio .
equation for groundwater flow [37][38], Mass transport in hydrogeologic environments [39], Photon Q:-m. Nonlinear Systems

fusion (optical tomography) problem [40], Radionuclide decay-chain transport in porous media [41], Now let us allow the elements of the system matrices to depend on the statecvector and on the time. If
Groundwater flow in dual-porosity media [42], Radionuclide decay chain transport in dual-porositythey depend explicitly on time only, then we have a special case of a time-varying system, and there are
media [43], Groundwater flow in discretely fractured porous media [8], and Diffusion and convectionexamples of extending Krylov subspace model reduction methods to this case [54][70].

dominated flow [9]. . ) . . _ Note that, even when system matrices depened on , Eq (4) is a special case of a general non-linear syste
» Finally, we have the MEMS community which has just recently started to exploit the modern opportuni-

:mmoﬁ:doam:mgcozo:“m_mo:omﬁm:oomu-n_om_:@moﬁ:mﬁo;mo_,_._:mm:NmaBoam_ﬁoﬁma_oﬁoi:oﬂ W«n \?SES_ G@
[60], and the Comb-drive resonator [61]. It is interesting to note that the MEMS community appears to dr -

have learned about model reduction from the electrical engineers and is not aware of work on the modgl, evident solution for model reduction is to split the whole system into nonlinear and linear parts and then
reduction of advection-diffusion PDEs, even though this body of work is much closer to typical MEMS, | apply the model reduction to the linear subparts [

- - 24], thus reducing the total number of unknowns in the
simulations.

state vector. Another popular alternative is to linearize the non-linear system around an operating point and
5.2 Approximating Lyapunov Equations then to make model reduction for the resulting linear system. Definitely, the answer as to whether this is

Unfortunately, Padé and Padé-type approximants do not have global error estimates, similar to Eq (18yssible depends on the application in question. There is an interesting example in Refs [71][72], where, in
and this drives mathematicians to develop computationally effective strategies for large dimensional sygtder to improve the precision of the linearization process, the authors have included quadratic terms in the
tems based on the methods described in Section 3. In [7] these approaches are referred to as SVD-Kryfpansion.

and in [62] there is a good overview of existing strategies. There are some methods for model reduction of nonlinear systems applicable to small-dimensional prob-
The optimal minimal reduction methods for linear systems comprise two computationally expensivéems [73][74], and some special cases where it is possible to find particular approaches which allow us to

steps: solution of Lyapunov equations (15) and (16) for the controllability and observability grammiansyse ideas from the previous section [59][75][76]. Nevertheless, to our knowledge, for the general case of

and then eigenvalue-type decomposition of the product of two grammians, Eq (17). The computational tinrmodel reduction of large nonlinear systems, there appears to be one approach only, which we consider ir

for both steps, even using the most advanced computational methods [63], grows as the cube of the systhennext section.

dimension. 6

. . . . . . 1 Proper Orthogonal Decomposition
A general idea to decrease the computational time is to change the exact grammians to their _0<<.S:_moq s

.. .. .. . I
m.ccﬂox_._:mﬁ_o:m. It happens that it is possible if the Jcicmq of inputs and ocﬁ.ca are much _.mmm ﬁ:mq %%Ecqm the complexity of the original phenomena. We remind ourselves that nonlinear systems may show
a::m:m_o: of the m.E.Hm <mo_”@u§ e » and this 'S the case for the most _3_8:@3 Q.mo:mm_ mcc__ommmﬁmg_:_mm such as snap-through, and bifurcations, and ultimately the onset of chaotic behaviour, all of
tions. As a result, it is Uomw_.c_m o solve Lyapunov equations for low-rank grammian muuqox_amﬁ_n:m MUCR hich should be represented in the reduced system. In this case, in order to find an appropriate low-dimen
faster than for exact grammians [64][65][66][67]. For the case of a dense mhatrix , the computational time

. . . . . . . sional subspace (6), one can use results of the full order simulation of the original dynamic system (4), and
is already proportional to the square of the system dimemsion , and it may be linearly proportional to _, . . . L o . .

. his is implemented within the proper orthogonal decomposition (POD; another popular name is Karhunen-
for the case of a sparse matrx . Also, the advantage of these methods is that they can be 3:::_2& in

terms of matrix-vector products only, as for the Krylov subspace methods. The second step, balancing, with



Loeve decomposition) [77]. This is the main difference w. r. t. linear systems, where the model reduction dz

process can be based on the system matrices without performing a full order simulation.

Z = X DX (), u(h)] (43)

Let us consider a slightly simplified procedure for a finite-dimensional system. The first step is to performThere is a hidden computational problem with Eq (42), momentarily ignoring Eq (43), which is, how to

one or more simulations and to collect a series of so-called “snapshots”
w={x},woo"xQo’ (37)

where matrix W is composed from s state vectors x;, corresponding to different times of simulations of
Eq (4). This is the most crucial step during POD because the reduced basis will be obtained from matrix
only, and if it does not give a good representation of the whole ensemble of possible values of x, then the
generated low-dimensional basis will lead to a poor quality of approximation. If, for linear systems, it was
possible to perform model reduction for any input functions, for non-linear systems it is necessary to
choose the most typical input functions, and to perform simulations with them. Unfortunately, there exist
almost no formal rules as to how to choose the number “snapshots” to collect and at what times they should
be taken. Hence, POD is more of an “art”, and typically, for any new nonlinear system, it is necessary to
make a special investigation in this respect.

Nevertheless, the following POD steps are completely formal. For a given “snapshot” iifatrix

mally possible to find a low rank approximation within a given error margin by means of a Singular Valuef the matrix dimension. This means that when the dimension of miatrix

Decomposition (SVD) [7][23]
N
w=Uvzw = Y o(u,B)),200"x0°, U0n"x0", s00°x0° (38)
i=1

where ¥ = diag{ o} is a diagonal matrix of singular values, U = {u} is a matrix of left singular vec-
tors,and ¥ = {v} is a matrix of right singular vectors. Provided the singular values of W rapidly decay
we can take only a small number singular vectors, k « s, corresponding to the largest singular values, and
this gives us a low-rank approximation of matrix /¥ of the form

k
~ A . ~T
WEUBD = Y o, B (39)
i=1
where the reduced matrices are formed from the full matrix by leaving only & dominant vectors. Eq (39)

shows that all observations are effectively described by a small number of vectors u,, which gives a
reduced basis on which to project the original differential equation:

X=U (40)

compute the reduced system matrices. Matrix  contains some functiens of and hence Eq (42) should be
computed by means of symbolic manipulations. This is practically unfeasible. In the general case one may
only compute the right sides in (42) for each time step during the simulation of the reduced model and this
then constitutes the main computational cost. For example, in Ref. [78], the size of the state vector has bee!
reduced from 21540 to 15 (about 1500 times) but, because of the above reason, the time of the simulatior
was reduced only by a factor of six.

POD has been used extensively in fluid dynamics in order to model turbulence [77]. Recently, it has been
employed in a variety of disciplines tied with nonlinear dynamics: Rapid thermal processing systems [79],
Control of a solid fuel ignition [80], Chemical vapor deposition [81][82] and other Distributed reacting sys-
tems [83]-[86], Cascading failures in power systems [87], Feedback control of systems governed by a non-
linear PDE [88]-[90], and various Mechanical engineering problems [78],[91]-[93]. The MEMS
community has also started to employ this technique [71][94][95].

it is for- The SVD decomposition of a matrix is a computationally demanding method: the time grows as the cube

grows we might not have
enough computational resources in order to make the decomposition (38). It happens that again iterative
methods based on the Krylov subspaces can help to find the dominant singular vectors without performing
the full SVD decomposition [96][97] and thus keeping computational time within reasonable limits.

The original POD procedure does not take into account the information about required system inputs and
outputs, and this limits its applicability in system simulation. Recently, the method has been generalized
[98][99] in order to take into account ideas from the linear control theory. The generalization is based on
the introduction of “empirical grammians” which are computed based on “empirical snapshots”. This
opens new perspectives for applications of POD to nonlinear model reduction and hopefully in the future
we will see further development of these ideas.

7. Conclusion

Let us summarize the current status of automatic model order reduction. The situation is reasonably good
for large-scale linear dynamic time-invariant systems. The moment matching methods for model reduction
based on the Arnoldi and Lanczos algorithms are in a mature state. They scale well with the size of the sys
tem, their behavior is fairly predictable, and they are easily implemented in almost any computational envi-
ronment. As was already mentioned, the Arnoldi process is more computationally stable and one can
implement it much easier than the Lanczos algorithm. On the other hand, the latter can match more

The transition from Eq (37) to (39) can be made completely automatic because according to SVD-theofjoments and thus provides a better approximation of the original system. As a result, the Arnoldi process is

there is an error estimate based on singular values with the norm

|w-w (41)

and Eq (39) actually reduces this norm to a minimum. The problem is that it is difficult to predict, a priori,
whether this error estimate can be used for the transition from Eq (4) to (8), because this already strongly
depends on the quality of the generated “snapshots”, that is, whether they are representative or not.

the best choice for those who would like to implement moment matching methods fast and from scratch,
and it is better to obtain the implementation of the Lanczos algorithm from professional sources.

A typical question with moment matching techniques is: when to stop model reduction. A good strategy is
provided in Ref. [52], where a local error estimate has been suggested for model reduction based on the
Lanczos algorithm. First, it is necessary to estimate a range of frequencies in which the approximation of
the transfer function is required. It is possible tosget  to an expansion point in the middle of this range and

The final step is to project original non-linear equation onto the low-dimensional basis. For Eq (4), E:m?m: to use the local error estimate on the border of this range as a monitor as to when to stop the mode

the elements afft ankl depend.on , we can write
A=XDMO¢ and b = X b (42)

and, for the general case of Eq (36), the reduced model becomes

reduction process, because the approximation error typically increases faster the further on is from the
expansion point. This procedure still does not give a global error estimate as the balanced truncation
approximation does, but for most engineering purposes this should be good enough.

Another problem is that Padé and Padé-type approximants are local by their nature, and they might be no
optimal if one would like to obtain a good approximation of the transfer function over a wide range of ,



that is, the dimension of the reduced model might then be too large. Here one can think of a Rational Krg-
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this area, and as the experience of mathematicians grows one can expect more practical outcomes for engi-

neers. This will bring us truly automatic model reduction, just as we have for the case of small linear m<m. :

tems right now, provided the minimum over the norm (18) is enough for the application. Let us stress th[4]

with the example from Ref. [100]. The norm (18) measures the absolute error over the whole frequency

range, and if the transfer function changes by many orders of magnitude, then the balanced truncatiiZh

approximation could describe the transfer function behavior quite well if we consider it from the viewpoint

of the absolute error, but not that well if we consider the relative error. (3]
The situation with nonlinear systems is quite different, and human intervention in some form appears E_

be inevitable here. First, it is necessary to see if a problem in question can be handled by

* linearization,

« splitting to linear and non-linear subparts,
» some special effective case for a particular nonlinear dynamic system.

(5]

(6]
[7]

(8]
(9]

If not then the choice is clearly POD, where the main questions are: how many “snapshots” should be gen-
erated, and how often. Alternatives here are to follow the example of a similar nonlinear system, or to make
a special investigation in order to learn the special behaviour and requirements of the system. Nevertheless,
the POD suggests quite an appropriate framework for general nonlinear model reduction because it is pos-
sible to state that human intervention here is limited to decision making. After a researcher has decided on
how to obtain matrix (37), all other POD steps can be made fully automatic. POD is especially attractive

for those applications where it is possible to obtain a reduced system matrix (42) in a closed form, that is, [10]
when the governing equations can be directly projected to the reduced basis.

. [11]
8.  On-line resources [12]

The advent of the internet has made accessible a wide variety of informational resources. There are good
slide shows on model reduction with illustrations and examples [101][102]. Below there are homepages {#3]
scientists involved in model reduction, in which one can find additional resources:

¢ A. C. Antoulas - http://www-ece.rice.edu/~aca/ [14]
e P. Benner - http://www.math.uni-bremen.de/~benner/ [15]
« D. Boley - http://www-users.cs.umn.edu/~boley/
* R.W. Freund - http://cm.bell-labs.com/who/freund/
» B. B. King - http://www.math.vt.edu/people/bbking/ [16]
» J. E. Marsden - http://www.cds.caltech.edu/~marsden/
e S. Lall - http://element.stanford.edu/~lall/ [17]
e T. Penzl - http://www.mathematik.tu-chemnitz.de/in_memoriam/penzl!/
e Y. Saad - http://www-users.cs.umn.edu/~saad/ [18]
* P.Van Dooren - http://www.auto.ucl.ac.be/~vdooren/
» A.Varga - http://www-er.df.op.dIr.de/staff/varga/ [19]
Also, there are a number of theses, available on the internet, which provide a good introduction in a partic-
ular field: Adaptive meshing [103], Krylov subspaces [104], Control theory [105], Moment matching [20]
model reduction [106][107], SVD-Krylov model reduction [108], and POD [109][110].

[21]
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